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Abstract

We present a new linear programming relaxation for the problem of minimizing the sum of weighted completion times of
precedence-constrained jobs. Given a set of n jobs, each job j has processing time pj and weight wj . There is also a partial
order ≺ on the execution of the jobs: if j ≺ k, job k may not start processing before job j has been completed. For Cj
representing the completion time of job j, the objective is to minimize the weighted sum of completion times,

∑
j wjCj . The

new relaxation is simple and compact, has exactly two variables per inequality and half-integral extreme points. An optimal
solution can be found via a minimum cut computation, which provides a new 2-approximation algorithm in the complexity
of a minimum cut on a graph. As a by-product, we also introduce another new 2-approximation algorithm for the problem.
c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

We consider the following nonpreemptive schedul-
ing problem. There are n jobs, j = 1; : : : ; n, and one
machine. Job j is to be processed without interrup-
tion for pj units of time and has a positive weight wj,
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j = 1; : : : ; n. A partial order ≺ is imposed on the se-
quencing of the jobs: j ≺ k implies that job k may
only start processing once job j has been completed.
For a given schedule, let Cj be the completion time
of job j; j=1; : : : ; n. The objective is to minimize the
sum of the weighted completion times,

∑n
j=1 wjCj.

Using the notation of the survey article of Graham
et al. [5], this problem is denoted 1|prec|∑wjCj. The
problem is known to be NP-complete [8].
The �rst constant factor guarantee was given by

Hall et al. [6], who provided a 2-approximation algo-
rithm. This is the best-known approximation factor to
date. The algorithm of Hall et al. is based on solving
a linear programming relaxation of the problem. The
relaxation uses completion time variables. The linear
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program contains an exponential number of inequali-
ties, yet it can be solved in polynomial time using a
separation oracle. Hall et al. also pointed out that a
relaxation proposed by Potts [10], a linear ordering
formulation, contains only a polynomial number of
constraints, and has the property that any feasible so-
lution satis�es all the constraints of their original lin-
ear programming relaxation.
In this paper we present a linear programming re-

laxation that is weaker than that of Potts’, but stronger
than the one of Hall et al. [6], thus within a factor
of 2 from optimum. Our relaxation is based on linear
ordering variables, like the linear ordering relaxation
of Potts’. However, it contains only 2 variables per in-
equality and is simpler than Potts’ relaxation. In addi-
tion, a half-integral optimal solution can be found via
a minimum cut computation. This is a consequence of
the work of Hochbaum et al. [7].
Finally, we propose a new 2-approximation algo-

rithm for the problem, which is based on a simple
observation concerning the interchange of weights
and processing times for the general problem.
Independently of our work, a di�erent approach

that also provides combinatorial 2-approximation
algorithms for the problem was introduced by Chekuri
and Motwani [2] and by Margot et al. (the latter was
communicated to us by Schulz [13], see also [9]).

2. Linear programming relaxation for
1|prec|∑wjCj

2.1. The completion time formulation of Hall et al.

The formulation of Hall et al. [6] uses the variables
Cj that represent the completion times of the jobs. Let
N={1; : : : ; n} be the set of jobs. For each subset of jobs
S ⊆N let p(S) :=

∑
j∈S pj and p

2(S) :=
∑

j∈S p
2
j .

The following valid inequalities were proposed by
Queyranne [11]:

∑
j∈S

pjCj¿
1
2
(p2(S) + p(S)2) for each S ⊆N: (1)

Note that the right-hand side in (1) is a supermodu-
lar function on the subsets of N . More importantly,
the right-hand side 1

2 (p
2(S) + p(S)2) is equal to the

optimal weighted sum of completion times for the set

S when each job’s weight is equal to its processing
time, min

∑
j∈S pjCj.

The precedence constraints are introduced by
adding

Ck¿Cj + pk if j ≺ k: (2)

The linear programming relaxation on completion
time variables CT can now be written as

(CT)
Min

n∑
j=1

wjCj

s:t: (1)–(2)

The 2-approximation algorithm of Hall et al. [6]
works as follows: �rst solve the linear program CT
and then schedule the jobs in a sequence correspond-
ing to optimal LP values for Cj; �Cj; j = 1; : : : ; n, in
nondecreasing order. Speci�cally, renaming the jobs
so that the optimal solution to the linear program satis-
�es �C16 · · ·6 �Cn, inequalities (1) applied to the sets
S = {1; : : : ; j}, imply that for each j = 1; : : : ; n,

�Cj¿
1
2

j∑
i=1

pi:

Since the completion time of job j in the schedule
produced by the algorithm is

∑j
i=1 pi, scheduling the

jobs in the order 1; : : : ; n is a 2-approximate solution.

2.2. The linear ordering relaxation of Potts

In the relaxation proposed by Potts [10] there is a
binary variable for each pair of jobs i and j, �ij, which
is 1 if i is scheduled before j, and 0 otherwise. Clearly
either i is scheduled �rst or j is, and hence

�ij + �ji = 1; i = 1; : : : ; n; j = 1; : : : ; n; i 6= j: (3)

If job i is constrained to precede j in the partial order,
then

�ij = 1 if i ≺ j: (4)

To capture the transitivity of a feasible schedule, that
is, if i is scheduled before j and j is scheduled before
k (�kj = 0), then i must be scheduled before k, the
following valid inequalities are used:

�ij6�ik + �kj; i = 1; : : : ; n; j = 1; : : : ; n;

k = 1; : : : ; n; i 6= j 6= k 6= i: (5)
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The completion time of job j, Cj, is

Cj = pj +
∑
k 6=j
�kjpk ; j = 1; : : : ; n: (6)

It is easy to see that the linear ordering formulation
ILO

Min
n∑
j=1

wjCj;

(ILO)
s:t: (3)–(6);

�ij ∈ {0; 1}
is indeed a complete formulation of the problem (see
[16]). To obtain a lower bound, we relax the integrality
constraints replacing them by

�ij¿0; 1 6= j; (7)

we will refer to the relaxation of ILO as LO.
This linear programming relaxation was proposed

by Potts [10]. As observed in [6], this relaxation satis-
�es all the inequalities of the relaxation CT when de-
riving the completion times values from (6). Thus the
optimal solution can be rounded as before to produce
a 2-approximate solution.

2.3. The new relaxation

We replace the triangle inequalities (5) with the
inequalities

�ki6�kj if i ≺ j; k 6= j; k 6= i: (8)

These inequalities correspond in general to a proper
subset of the triangle inequalities that guarantees that
whenever i ≺ j, the corresponding fractional comple-
tion times satisfy constraint (2).
The only variables �ij whose values are undeter-

mined are those for which the jobs i and j are unre-
lated, which we denote i〈 〉j. Thus we write the new
integer programming relaxation ISLO (integer sim-
pli�ed linear ordering) as follows:

Min C +
∑
k〈 〉j

�kjpkwj;

(ISLO) s:t: �kj + �jk = 1 for all k〈 〉j; (9)

�kj − �ki¿0 if i ≺ j and
k〈 〉i; k〈 〉j; (10)

�kj ∈ {0; 1} for all k〈 〉j; (11)

where C =
∑

i≺j piwj. Note that since a subset of
triangle inequalities (5) has been dropped, the above
integer program is only a relaxation of the problem.
Let SLO be the linear programming relaxation of ILO,
where the integrality constraints (11) are replaced by
�kj¿0, k〈 〉j.
The following lemma establishes that the linear pro-

gram SLO is stronger than the linear program CT. For
notational simplicity, assume that we have de�ned all
the �ij’s for i 6= j (all the missing ones have their val-
ues determined by the precedence relations, and their
contribution to the objective function appears in the
constant C above). A similar lemma for LO was pre-
sented in [12]. For completeness we provide a full
proof below.

Lemma 2.1. Let {�ij} be a feasible solution to
the linear program SLO; and de�ne Cj :=pj +∑

k 6=j �kjpk ; j = 1; : : : ; n. Then {Cj} is a feasible
solution to CT.

Proof. To verify (1), �x any subset S ⊆N , then
∑
j∈S

pjCj =
∑
j∈S

pj


pj +

∑
k 6=j
�kjpk




= p2(S) +
∑

j∈S;k∈N
j 6=k

�kjpjpk

¿p2(S) +
∑
j; k∈S
j 6=k

�kjpjpk

= p2(S) +
∑
j; k∈S
j¡k

(�kj + �jk)pjpk

= 1
2(p

2(S) + p(S)2);

where the last equality follows from (9).
To verify (2), suppose that i ≺ j, then since �ij=1,

Cj = pj + pi +
∑
k 6=j; i

�kjpk ;

applying (10),

Cj¿pj + pi +
∑
k 6=j; i

�kipk :
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But since �ji = 0,

pi +
∑
k 6=j; i

�kipk = Ci;

so that (2) follows.

A consequence of the lemma is that the value of the
solution ofSLO is within a factor of 2 from optimal. In
particular, an optimal solution to SLO can be rounded
to a 2-approximate schedule as in Section 2.1. Also if
we denote OPTLP the optimal objective value of the
linear program LP, we have that

OPTCT6OPTSLO6OPTLO:

Examples from [6] show that the inequality on the left
is tight. An interesting open question is whether the
inequality on the right is tight or not. Indeed, it is not
even clear whether the inequality is strict for the case
of the integer programs ISLO and ILO.
Each constraint of ISLO has no more than two vari-

ables. Therefore, ISLO is a special case of IP2 studied
by Hochbaum et al. [7],

Min
n∑
j=1

wjxj;

(IP2) s:t: aixji + bixki¿ci for i = 1; : : : ; m;

‘j6xj6uj j = 1; : : : ; n;
xj integer j = 1; : : : ; n;

where 16ji; ki6n, and all the coe�cients are
integer. Any IP2 problem that is feasible has a su-
peroptimal half-integral solution derived in the time
required to solve a minimum cut problem on a
network with O(nU ) nodes and O(mU ) arcs, for
U = maxj=1; :::; n(uj − ‘j), for n the number of vari-
ables and m the number of constraints. Moreover,
the half-integral solution has a rounding of the com-
ponents that are half-integer that is feasible and the
resulting solution is 2-approximate for IP2.
For the integer program ISLO, with n the number

of jobs, the network of Hochbaum et al. [7] has O(n2)
nodes and O(n3) arcs. Furthermore, any IP2 problem
has a superoptimal half-integral solution that is derived
from the solution of the minimum cut problem on the
respective network. In addition, there is an optimal
solution that coincides with the half-integral solution
on the integer components.
Consider now the linear program SLO. Since the

integer program SLO has all constraint coe�cients in

Fig. 1. Construction of the network N.

{−1; 0; 1}, it follows from Lemma 6:1 of Hochbaum
et al. [7] that the extreme points of the linear pro-
gramming relaxation are half-integral. Namely, each
basic feasible solution has each variable �ij; i〈 〉j,
either 0; 12 or 1. Indeed, as in [7], an optimal solution
to the linear programming relaxation can be found via
a minimum cut computation.
Note that the procedure of Hochbaum et al. [7] for

generating a 2-approximation algorithm via rounding,
is not applicable to SLO because rounding is not guar-
anteed to generate a feasible solution to LO. Instead
it is necessary to compute the “fractional” completion
times and thus derive a feasible sequence.
We construct here a specialized network for SLO,

N, as follows. The set of nodes consists of a source
s and a sink t, and a node for each varaible �ij; i〈 〉j.
There is an arc from s to node �ij with capacitypjwi=2,
and an arc from �ij to t with capacity piwj=2, for each
pair i〈 〉j. Also, if i ≺ j there is an arc from �ki to
�kj and one from �jk to �ik , each with in�nite capacity
(see Fig. 1). For any subset of nodes S, we will use �S
to denote the set of nodes not in S, and (S; �S) the set
of arcs from S to �S, that is, the cut de�ned by the set
S. The network N has O(n2) nodes and O(n3) arcs.
The network just described is a simpli�cation of the
construction for IP2 of Hochbaum et al. [7].

Lemma 2.2. Each feasible solution {�ij} to ISLO
corresponds to a �nite cut (S; �S) inN;with s ∈ S; t ∈
�S; whose capacity is exactly the objective function
value of the solution {�ij}.
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Proof. Let S consist of the source s together with
the nodes �ij for which the corresponding SLO value
is 1. Suppose that i ≺ j, and k〈 〉i; k〈 〉j. If �ki ∈
S; �ki = 1, and then �kj = 1, so that �kj ∈ S. Also, if
�jk ∈ S; �jk =1; �kj=0, so that �ki=0 or �ik =1 and
then �ik ∈ S. Thus the cut (S; �S) has �nite capacity.
Finally note that if �ik ∈ S, �ki 6∈ S (because �ik = 1,
so that �ki =0), and the contribution of the pair {i; k}
to the capacity of the cut (S; �S) is pkwi=2+pkwi=2=
pkwi, the same as the contribution of �ik and �ki to the
objective function of SLO.

Lemma 2.3. Each �nite cut (S; �S); with s ∈ S, t ∈ �S;
corresponds to a half-integral solution {�ij}; that is
a feasible solution to the linear program SLO and
whose value is precisely the capacity of the cut (S; �S).

Proof. Set {�ij} as follows:

�ij :=



1 if �ij ∈ S; �ji 6∈ S;
0 if �ij 6∈ S; �ji ∈ S;
1
2 if �ij ∈ S; �ji ∈ S or �ij 6∈ S; �ji 6∈ S:

A straightforward calculation shows that {�ij} satis�es
the conditions of the lemma.

Using Lemmas 2.2 and 2.3, we conclude the main
result of our paper.

Theorem 2.4. A half-integral solution to SLO can be
found via a minimum cut computation in the network
N; whose objective function value is a lower bound
on the optimal objective function value of ISLO.

As a �nal remark, note that in the network N we
can always send 1

2 |piwj−pjwi| units of ow directly
from the source to the sink through node �ij, thus
for the actual computation of the minimum cut, we
can subtract from the capacity of the arcs (s; �ij) and
(�ij; t), the quantity 1

2min(piwj; pjwi) and eliminate
the zero capacity arcs from the network. With this
preprocessing, each �ij node is connected either to the
source or the sink but not both.

3. A new 2-approximation algorithm for
1|prec|∑wjCj

In the following theorem we generalize an observa-
tion made by Von Arnim et al. [1], for the special case

in which all the weights are 1. Although the proof is
straightforward, it has not been mentioned earlier in
the literature.

Theorem 3.1. For any instance of 1|prec|∑wjCj;
suppose that the weights and processing times are in-
terchanged and the precedence relations are reversed.
Then the new instance of 1|prec|∑wjCj is equivalent
to the old one. More precisely; there is a one-to-one
correspondence between feasible solutions that pre-
serves costs.

Proof. In the integer linear ordering formulation ILO,
set ��ik := 1 − �ik . Then { ��ik} is a feasible solution
to the new instance, with the same objective function
value. By symmetry, the result follows. Note that we
have shown that the sequence of jobs (a1; : : : ; an) is
feasible for the original instance if, and only, if the
reversed sequence (an; : : : ; a1) is feasible for the new
instance; in addition, both sequences have the same
sum of weighted completion time values.

Note that the proof of the theorem also establishes
that the SLO relaxations of the two instances have the
same objective function value.
The new approximation algorithm consists of ap-

plying the algorithm of Hall et al. [6], described in
Section 2.1, to the new instance constructed as in the
theorem — exchanging the roles of the weights and
processing times. More precisely, we �rst solve the
linear program SLO; let {�ij} be an optimal solution
and let { ��ij} as in the proof of the theorem (i.e. ��ij =
1−�ij), so that { ��ij} is an optimal solution to the SLO
linear program corresponding to the new instance in
which processing times and weights have been inter-
changed, and the precedence graph has been reversed.
We now construct the “fractional” completion times
Tj :=wj+

∑
k
��kjwk=wj+

∑
k �jkwk ; j=1; : : : ; n, and

assume without loss of generality that T1¿ · · ·¿Tn,
then the ordering {n; : : : ; 1} is feasible and within a
factor of 2 from optimal in the new instance or, equiv-
alently, the ordering {1; : : : ; n} is feasible and within
a factor of 2 from optimal in the original instance.
In e�ect, note that after solving the min-cut of

Section 2.3, if {�ij} is an optimal solution, we
obtain two 2-approximation algorithms: as in [6],
use the sequence based on nondecreasing values of
Cj :=pj +

∑
k �kjpk ; j = 1; : : : ; n, and as above use
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the sequence based on nonincreasing values of Tj.
Thus at essentially the same cost in running time, we
can produce two sequences that are guaranteed to be
within a factor of 2 from optimal.
An interesting open question, addressed to us by

Schulz [13] and an anonymous referee, is whether the
two sequences are indeed di�erent.

4. For further reading

[3,4,14,15]
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