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ABSTRACT

Motivation: The recent development of high-throughput drug
profiling (high content screening or HCS) provides a large amount
of quantitative multidimensional data. Despite its potentials, it poses
several challenges for academia and industry analysts alike. This is
especially true for ranking the effectiveness of several drugs from
many thousands of images directly. This paper introduces, for the first
time, a new framework for automatically ordering the performance
of drugs, called fractional adjusted bi-partitional score (FABS). This
general strategy takes advantage of graph-based formulations and
solutions and avoids many shortfalls of traditionally used methods in
practice. We experimented with FABS framework by implementing
it with a specific algorithm, a variant of normalized cut—normalized
cut prime (FABS-NC′), producing a ranking of drugs. This algorithm
is known to run in polynomial time and therefore can scale well in
high-throughput applications.
Results: We compare the performance of FABS-NC′ to other
methods that could be used for drugs ranking. We devise two
variants of the FABS algorithm: FABS-SVM that utilizes support
vector machine (SVM) as black box, and FABS-Spectral that utilizes
the eigenvector technique (spectral) as black box. We compare the
performance of FABS-NC′ also to three other methods that have
been previously considered: center ranking (Center), PCA ranking
(PCA), and graph transition energy method (GTEM). The conclusion
is encouraging: FABS-NC′ consistently outperforms all these five
alternatives. FABS-SVM has the second best performance among
these six methods, but is far behind FABS-NC′: In some cases FABS-
NC′ produces over half correctly predicted ranking experiment trials
than FABS-SVM.
Availability: The system and data for the evaluation reported here
will be made available upon request to the authors after this
manuscript is accepted for publication.
Contact: yxy128@berkeley.edu

1 INTRODUCTION
Automated microscopy is increasingly used in drug discovery,
especially predicting the toxicity of new drugs (Perlman and
Altschuler, 2004). The so-called high-content screening (HCS)
has greatly enhanced investigators’ capability of discerning the
response of cells treated by various drugs (Conrad and Gerlich,
2010; Denner et al., 2008; Feng et al., 2009; Lang et al., 2006;
Mitchison, 2005a; Nichols, 2007; Taylor and Hsaskins, 2007). HCS
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accomplishes this by analyzing phenotypic features of the cells from
tens of thousands cell images produced by HCS. In addition, the
decreasing cost of such a method means a wide-spread application
(Lin et al., 2010). HCS employs cell imaging assays, tagged with
fluorescent dyes—each field of cells contains these tags for its
different macromolecules. Automated microscopy is performed to
produce a large amount of visual information.

There are three steps during this process (Mitchison, 2005a;
Yarrow et al., 2003): fluorescence-tagging, automated microscopy
and identification and measurement of target phenotypic feature(s)
for further analysis. The analysis step usually poses the most
challenge. To extract meaning out of a gigantic image database,
traditional tools usually need to be tailored to specific known
phenotype’s features, instead of unknown yet more informative
differences. For example, it has been reported that applying an
analysis method that only distinguishes phenotypic changes in
cellular level misses on the detecting meaningful morphological
modification on subcellular structures (Taguchi et al., 2007; Zhou
and Wong, 2006).

In high-throughput drug screening assays, typically a
quantity, such as normalized intensity of a reporter fluorescent
protein (Morelock et al., 2005), is assumed to be measurable.
Differences between samples of two distinct cell populations
(such as treated versus untreated) are estimated and tested for
significance. Methods using statistics like Z ′-factor (Zhang et al.,
1999) to evaluate reliability of the measurements have been
developed. Comparison of the difference is usually done by
performing a multivariate F-test to test whether two populations
are distributed differently. But F-test may introduce high errors
when the distributions are not normal, which is expected to be the
case in many types of cell responses. Moreover, in image-based
assays, the use of a measurable quantity is no longer applicable
when this quantity is not straightforward to obtain directly and the
measurement itself can never be perfect. For example, to measure
the composition of morphological subtypes of mitochondria
requires pattern recognition algorithms to accurately detect and
quantify target events (Peng et al., 2011). Though many advanced
algorithms have been developed for years, these pattern recognition
algorithms usually require non-trivial tuning and optimization for
each study because they may generalize poorly, sometimes not
even generalize within a well, due to noise and systematic bias
introduced during the sample preparation and imaging process
steps, inducing additional overhead when attempts are made to
scale up the assay to high throughput.

Another challenge is when a multiplex approach is required,
where multiple independent quantities are measured for each
single cell. In these cases, response of each single cell will be a
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multi-dimensional vector. How to measure difference between these
vectors become an issue because simple Euclidean distance in the
multi-dimensional space may not serve the need. One solution is to
come up with an appropriate ‘metric’ to convert multi-dimensional
vectors into a scalar that reflects the difference. There is, however,
no generally applicable solution about how to come up with this
metric. Usually, one or more dimensions in the vector come from an
imperfectly measured quantity, such as one that requires advanced
pattern recognition in order to automatically extract, as discussed in
the previous paragraph. Another issue is that our observation is the
result of sampling, which inevitably introduces sampling errors and
is further complicated by possible heterogeneous responses by cells
(Altschuler and Wu, 2010).

The focus of this research is to address the issues mentioned above
for the application of HCS in drug ranking. Drug ranking refers to the
ordering of a group of different drugs according to their effectiveness
by certain criteria. One of the most used criteria is the relative
toxicity among drugs (Paull et al., 1992). Ideally, this provides
the important scale to assess relative merit of each candidate drug.
However, each cell responds to a certain drug differently, thus
making the outcome of any ranking highly dependent on sampling
and noise. A conspicuous example is the fragmentation of cells or
organelles: the intact and the completely fragmented states are easy
to recognize while the degree of partial fragmentation is difficult
to gage, thus often involving human experts and time-consuming
manual processes. This is infeasible for high-throughput screening
such as HCS (Lin et al., 2010; Peng et al., 2011).

Our objective is to develop an efficient and accurate ranking
measure (metric learning) that can be used to order candidate
drugs according to their effectiveness. To this end, we developed a
framework called Fractional Adjusted Bi-partitional Score (FABS).
This general strategy, introduced here for the first time, takes
advantages of graph-based formulations and solutions and avoids
many shortfalls of traditionally used methods in practice. We use
such a scheme because graph-based construction works well in
several areas of data mining (Washio and Motoda, 2003), machine
learning (Jordan, 1996) and image processing (Hochbaum, 2001),
whereas a recent publication (Lin et al., 2010) also confirms its
usefulness in the HCS context.

In order to apply our FABS to the images, we use a feature
extraction tool first presented in (Peng et al., 2011). This tool takes
cell images and output several vectors that represents important
geometric and other features of the target images—these vectors
are then used as inputs for getting FABS.

One feature of FABS is that it has, as part of the input and
as training data, extreme cases labeled as positive and negative
controls, which in our case are the intact and the completely
fragmented states mentioned previously. The algorithm does not
involve any training from in-between cases, which are hard to come
by. This completely sidesteps the common problem of a laborious
and time-consuming annotation step, performed by experts to assess
the relative merit of drugs for a small sample of images used as a
training group. Furthermore, our measure takes the advantage of
high-volume nature of the dataset, using all available images for
computation of FABS for each drug. This reduces the effect of noise
and sampling bias. This framework can potentially be used for any
task that requires to quantify subtle and implicit differences between
populations of high-dimensional feature vectors. By formulating the
problem as a biparition problem as in FABS, there is no need to

solve an image-based drug ranking problem as a regression problem.
Our preliminary formal analysis of FABS shows that the expected
error and variance of the estimated scores by FABS will be within
a manageable range given the classification error by the bipartition.

To empirically evaluate our framework, we use a model of (NC′)
and the respective algorithm recently introduced by Hochbaum
(2010c). That algorithm runs efficiently and is furthermore
combinatorial. This latter feature differentiates it from ref. (Lin
et al., 2010) in which a spectral techniques is used to achieve a
bipartitioning. Combinatorial solutions are superior than spectral
ones in several regards such as being more efficient and accurate
(Hochbaum, 2010b,c), as shown in our experimental results.

2 METHODOLOGY
This section presents a general framework for quantifying the
difference in morphological composition between populations of
cells. The proposed framework utilizes a procedure named FABS-
A, where A stands for a bipartition algorithm and FABS stands for
(FABS). We show that using certain graph, theoretical formulations
for the bipartition algorithm avoids many shortfalls of the methods
used in practice. Its importance lies in teasing apart cell groups based
on morphological composition and in detecting whether or not such
differences exist.

As previously mentioned, we use a feature extraction tool, capable
of processing cell images with different dimensionalities (from
static 2D to animated 3D with multiple channels) to generate high-
dimensional (in our experiments, 134 D) output vectors, called
feature vectors. Each feature vector, corresponds to an image of a
single cell and contains measurements for the image characteristics,
such as the intensity of the image, the shape of a particular
object in the image, etc. Each group of cell images (and their
corresponding feature vectors) can be associated with a certain
population (e.g. populations representing cells to whom a certain
drug has been applied).

The method proposed in this section, FABS-A, is capable of
receiving—as input—the feature vectors from cells representing
different populations and detecting and quantifying the differences
between these populations. For example, given the features extracted
from the mitochondrial images of two populations of cells, one
derived from diseased tissues and the other from healthy tissues,
FABS-A will tell us to what extent the fragmentation levels of
their mitochondria are different and estimate the significance of the
difference.

We then perform FABS-A on the processed feature vectors. The
input to FABS-A is the processed feature vectors by principal
component analysis (PCA) to reduce dimensionalities of the original
data , each of which belongs to a certain population set, namely,
Pi , and training data. The training data consists of feature vectors
belonging to two populations on the opposite ends of the spectrum,
R1 and R2. These two population sets represent positive and negative
controls, which in this experiment are the completely fragmented
and the completely intact mitochondria cell populations.

Computation of FABS-A, the details of which will be discussed
shortly, consists of three steps: The first step is to construct a graph
from the input data. The second step is to apply a blackbox algorithm
(A) to find a bipartition on the resulting graph. The third step is to
recover a scalar score for each population, based on the fraction of
the cases that fall in the side of the partition boundary (cut) that
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contains positive controls. The blackbox can be any appropriate
bipartitioning algorithm available. The algorithm we propose to use
for the blackbox solves the normalized cut prime (NC′) problem
(Hochbaum, 2010b). We refer to this algorithm as NC′. We shall
see in the ‘Results’ section that this bipartitioning algorithm, in
the context of FABS-A (FABS-NC′), outperforms Support Vector
Machine (SVM) algorithm (FABS-SVM). This overall framework
provides a flexible general strategy for quantifying the differences
among population groups.

The major advantages of FABS-A include:

(1) it is capable of efficiently processing the high-dimensional
input data acquired from the images using feature extraction
tool from Peng et al. (2011);

(2) the generated output is one-dimensional, in that a single scalar
score is generated for each population of multidimensional
vectors.As such, the difference between the scores can be used
to quantify population differences in an unambiguous way;

(3) the calculation of the output scores is done in a way
that reduces the effects of outliers in distinguishing cell
populations;

(4) unlike many statistical tests, it does not assume any underlying
distribution for the populations;

(5) the labeled training data set required is minimal and
easily obtainable, requiring minimum intervention from the
experts; and

(6) it scales well in high-throughput applications.

In what follows we describe the three steps of FABS-A in more
details.

2.1 The FABS-A Algorithm

Step 1: graph construction
As mentioned previously, the input to FABS-A consists of n (pre-
processed) feature vectors, V={v1,...,vn}, each associated with
an HCS image, obtained after feature extraction and PCA pre-
processing. This input includes k population sets, {P1,...,Pk }. Each
population set in this case represents a set of feature vectors
corresponding to cells treated with a certain drug. Each feature
vector vi belongs to one of the population sets, indicating in this
case what drug has been applied to the particular cell the vector
is representing. The input also contains two training sets {R1,R2},
representing the extreme cases such as the completely fragmented
and the completely intact mitochondria cell populations. In the graph
construction step of FABS-A, an undirected graph G= (V ,E,l,w)
is created, where each node vi ∈V corresponds to a feature vector.
The set of all possible pairs correspond to the set of edges of the
graph E =V ×V that form a complete graph. Each feature vector
vi is labeled with lvi , which is the index of the population set it
belongs to. The labeling function, lvi , assigns a mapping from each
feature vector, vi , to its corresponding population set, determining
which population it belongs to. A weight function w : V ×V →�+
associates with each pair of nodes {i,j} (an edge) its encoding
connection strength, or the similarity strength between the two
nodes. For each edge [i,j], the weight wij and the distance between

the two points vi and vj have the relationship: one goes up as the
other goes down (or vice versa)—this also means that wij and
the similarity between vi and vj both go up or down together.
Several distance measures can be used for this purpose, among
them, Euclidean, city block and Minkowski distances. Notice that
constructing these similarity measures makes the dimensionality of
the vectors irrelevant to our algorithm.

Step 2: bipartitioning the graph using NC′
We first introduce some notations; given a graph G= (V ,E), a
bipartition of the graph, or a cut, is defined as (S,S)={[i,j]|i∈S,j∈
S}, where S =V \S. The capacity of a cut (S,S), is defined as:

C(S,S)=
∑

i∈S,j∈S,[i,j]∈E

wij.

More generally, for any pair of sets A,B⊆V , the capacity of the cut
is denoted by C(A,B)=∑

i∈A,j∈B wij. Similarly, the capacity of a
set, D⊂V , is denoted by C(D)=C(D,D)=∑

i,j∈D,[i,j]∈E wij.

As previously mentioned, in the second step of FABS-A, we use
a blackbox algorithm to find a bipartition on the graph. A bipartition
algorithm aims at finding the cut that separates the graph into S
and S, according to some underlying objectives. There are many
different objectives that can be selected. For instance, the bipartition
algorithm for the well-known minimum cut problem is defined with
the goal of separating the graph into S and S such that C(S,S) is the
minimum among all possible non-empty subsets S and S. Since the
goal is to obtain a bipartition for the FABS-A calculation process,
any bipartition algorithm can be used as a blackbox. However, an
extra requirement has to be imposed (either by the internal working
of the algorithm or by an external constraint) listed as follows.

Requirement 1. All positive controls R1 must be in S (or S) and
all negative controls R2 must be in S (or S).

For a particular blackbox implementation of FABS-A in Step 2
of Algorithm 1, we choose the previously mentioned bipartitioning
algorithm, called NC′, and adjust it to guarantee that the constraint
listed in Requirement 1 is satisfied. The resulting FABS-NC′
is semi-supervised in nature and incorporates all information of
the corresponding graph. The NC′ problem is defined as finding
minS⊂V C(S,S)/C(S,S) on a given graph. This objective combines
the goal of minimizing the similarity between the two parts of the
bipartition, the quantity C(S,S), with the goal of maximizing the
similarity between the elements of S. For a graph G= (V ,E), we
denote NC′(G)=minS⊂V C(S,S)/C(S,S). An efficient algorithm
for this problem was given in (Hochbaum, 2010a,b,c).

The polynomial time algorithm described in (Hochbaum, 2010b)
for NC′ was based on showing that solving NC′ is equivalent to
solving a certain parametric s,t-cut problem. In an s,t-cut problem
a node of a graph s is required to be on one side of the bipartition,
whereas the node t is required to be on the opposite side.

In the adaptation of the parametric s,t-cut algorithm for the
FABS-A framework, the positive and negative control data are used
as seed nodes that are forced to join s and t in the graph. This is
achieved through setting the nodes in R1 to be ‘infinitely similar’ to
the source node s, and the nodes of R2 to be ‘infinitely similar’ to
the sink node t. In terms of the graph that means that we add edges
of infinite weight between the source node s and all nodes in R1,
and edges of infinite weight between the nodes of R2 and t.
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Since NC′ can be solved in the running time of a minimum
s,t-cut problem (Hochbaum, 2010b), our FABS-NC′ implementation
is efficient, solving in polynomial time. We later compare
the performance of FABS-NC′, with FABS-SVM, where the
bipartitioning algorithm used is SVM, whose objective is to find a
high-dimensional hyperplane that is as wide as possible to separate
data of different labels (Cristianini and Shawe-Taylor, 2000).

Step 3: computing FABS scores
After a bipartition algorithm has been applied on G, all feature
vectors in the graph are partitioned into S and S. In the third step of
FABS-A, a scalar score, FABSPi

, is calculated for each population
set Pi . FABSPi

is the fraction of the number of feature vectors in
Pi that fall in the set S, to the total number of feature vectors in Pi .
Formally,

FABSPi
= |S ∩Pi|

|Pi| .

This is shown pictorially in Figure 1. The FABS scores of the
populations are then used to rank them: the higher the FABS
score the closer is the population to R1. The FABS scores are
therefore ordered so that FABSPπ(1)

≥FABSPπ (2)
≥ ...≥FABSPπ(k)

,
where (π (1),...π(k)) is a permutation of (1,2,...,k). The ranking
of the populations is then given by (π (1),...π(k)).

The entire procedure is summarized in Algorithm 1.

Algorithm 1 FABS-A

Inputs: The feature vectors {v1,...,vn} extracted from images
(possibly after PCA pre-processing), and their corresponding
population sets {P1,...,Pk }; The training data (or extreme sets)
{R1,R2}
Step 1: Construct G={V ,E,l,w}, a complete graph from feature
vectors;
Step 2: Use a bipartitioning algorithm A to find a bipartition (S,S)
on G such R1 ⊆S and R2 ⊆S;
Step 3: ∀Pi , calculate FABSPi

= |S∩Pi||Pi|
Step 4: The FABS scores are ordered so that FABSPπ(1)

≥
FABSPπ(2)

≥ ...≥FABSPπ(k)
, where (π (1),...π(k)) is a permutation

of (1,2,...,k). The ranking of the populations is then given by
(π (1),...π(k));
Output: An ordered array of population sets based on their FABS
score, {R1,Pπ1 ,....,Pπk ,R2}.

2.2 Significance test
One can further use the FABS scores to test statistical significance
of the difference between the effects of two drugs. The idea is to
apply bootstrapping to obtain FABS scores from a large number of
resampling trials and then perform hypothesis test on the difference
of the distributions of FABS. Algorithm 2 gives the test procedure,
which takes resulting FABS from repeated experiment and calculate
P-values from a t-test for each drug. The obtained P-value is then
transformed into a log score −logp.

To see if t-test is appropriate, there are several important
assumptions to check. First, the sets of FABS of two drugs must
each be normally distributed. We plotted a histogram of FABS
scores obtained by our FABS-SVM implementation and observed

Fig. 1. (a) The input with the feature vectors of images associated
with positive and negative controls R1 and R2 and four different
drugs drug A, drug B, drug C and drug D; (b) The bipartition
boundary after the cut is found: if R2 contains negative controls, such
as the completely fragmented state of mitochondria for toxicity criterion,
while R1 contains positive controls, representing cells in a desired
normal healthy state with mitochondria rescued from the completely
fragmented, then FABSdrug A=1, FABSdrug B=2/3, FABSdrug C=1/3,
and FABSdrug D=0. Our ranking of the drugs will be: drug A >> drug
B>> drug C>> drug D, where x >> y indicates that x is more effective
than y

that the distributions for each drug in our test data are roughly
bell shaped. In addition, for Z-IETD and Z-LEHD, the P-values
obtained through Jarque-Bera test (Jarque and Bera, 1987) are 0.5
and 0.0718, respectively, indicating approximate normality for both.
Another assumption is that variance for each group must be equal.
Though this is usually not the case in drug profiling applications,
t-test is robust against unequal variances if the sample sizes are
approximately equal for each group, which can be enforced in
drug profiling applications. Other assumptions, such as that sample
means and sample variances must be statistically independent, can
be compensated when the sample is moderately large or larger, which
is always the case for HCS. Consequently, the t-test is appropriate for
our purposes. When the number of population is high, we can apply
Bonferroni correction to avoid errors due to multiple comparisons.

Algorithm 2 Significance test

Step 1: Collect FABS from all subsampling trials for each drug, i.e.
randomly sample certain percentages of controls and drugs with
replacement from the original database repeatedly and calculate
FABS score per drug each time;
Step 2: Perform t-test on FABS obtained with any two different
drugs. T -test of drug A and drug B returns a P-value,
p(drug A,drug B);
Step 3: Return −logp(drug A,drug B)

2.3 Data preparation
We use a subset of a large image database of Chinese Hamster
Ovary cells published in Peng et al. (2011). The cells are divided
into four groups according to the drug treatments they have
received—control, squamocin, squamocin and z-IETD (shortened
as z-IETD), and squamocin and z-LEHD (shortened as z-LEHD).
Squamocin is known to induce mitochondrial fragmentation and
cell apoptosis (i.e. programmed cell death). z-IETD and z-LEHD
are inhibitors of caspases that play important roles in mitochondrial
fragmentation. The goal of the study was to investigate whether
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Fig. 2. Example cell images show different fragmentation stages of
mitochondria, tagged with a fluorescent dye. Images at the bottom row
are cells with the completely fragmented mitochondria, at the top row are
those without fragmentation, those in the middle are partially fragmented.
From (Lin et al., 2010)

z-IETD and z-LEHD can recover mitochondria from squamosin-
induced fragmentation. Figure 2 shows some example cell images of
mitochondria at different fragmentation stages. Intact mitochondria
usually appear like threads, as shown in the images at the top
row, whereas fragmented mitochondria appear like small globules
as shown at the bottom row. Even though the totally intact and
totally fragmented mitochondria (extreme set cases) can be easily
distinguished by visual inspection, it is very hard (if not impossible)
to look at a set of mitochondria images that are neither totally
intact nor totally fragmented (e.g. a set of mitochondria images
representing a population set of say cells treated by a certain
drug) and distinguish between these different population sets and
determine which extreme sets they are closest to and how they
compare against each other (in terms of level of fragmentation).
Another challenge is to automate this process. The automation
process is critical, because the biological data sets available are very
large and screening them manually could be a very time-consuming
and laborious task.

The challenge is to quantify and rank partial fragmentation as
shown in the middle row. (Peng et al., 2011) concluded that z-
LEHD was more effective than z-IETD in rescuing mitochondria
from squamocin-induced fragmentation. This conclusion was used
as the ground truth to assess the prediction accuracy of different
methods later and images treated by squamocin and control were
used as extreme cases.

Our database contains 257 images of cells treated with squamocin,
239 with z-IETD, 262 with z-LEHD and 238 control. We applied
a feature extraction method to extract 135 features from each
cell image to form the feature vector to represent each cell. This
feature extraction method is the same as the one that was used
to extract strong detectors from cell images to determine protein
subcellular localization as described by Lin et al. (2007). Strong
detectors include general purpose features derived from image
transformations, such as Haralick texture features and geometric
features of the objects extracted from the input image. These features

have been shown to be useful in problems like recognizing
fluorescent patterns of subcelluar organelles in protein subcellular
localization (Huang and Murphy, 2004).

3 RESULTS

3.1 Formal Analysis of FABS-A
Here, we formally define the drug ranking problem and report a bias–
variance analysis of FABS-A as a solution to this problem. The drug
ranking problem can be considered as a regression problem, where
given a multi-dimensional observation vi =X ∈�d , we assume that a
quantity Y ∈[−1,+1] is associated with X as our target metric of X .
A solution of this regression problem is to learn a regression model
from examples that compute Y given X . With the metric quantity Y ,
given two treatments a and b with population distributions Pa and
Pb, respectively, if

EPa
(Y |X )−EPb

(Y |X )�0, (1)

then treatment a will be considered to be more effective than
treatment b, assuming that Y =+1 is the desired phenotypic
outcome.

However, it is usually infeasible to manually assign score Y for a
sufficient number of training examples consistently. Instead, FABS-
A simplifies the problem as a bipartition problem. In our bipartition
scheme, our model will assign Yc =1 to a given X if Y �0 and
Yc =−1 otherwise, and then use empirical population mean as the
estimated population mean of Y . In a drug screening application,
this quantity will be used to rank the effectiveness of a treatment.

More formally,

Yc =Y +compl(Y )

where

compl(Y )=
{

1−Y if Y �0

−1−Y if Y <0

Instead of directly comparing the expectation of Y , FABS-A
compares the expectation of Yc to determine which treatment is
more effective.

EPa
(Yc|X )−EPb

(Yc|X )�0, (2)

Like Y , Yc is unknown and must be estimated with a model learned
from data. Let Ŷc be the estimation of Yc. Then

Ŷc =

⎧⎪⎨⎪⎩
Y +compl(Y ) if correctly classified

Y +1 if incorrect andY <0

Y −1 if incorrect andY �0

An analysis of bias and variance of the bipartition scheme is as
follows. The absolute error made by bipartition instead of regression
is

|Y −Yc|=|�Ŷc|=
{

|compl(Y )|=1−|Y | if correct

1+|Y | otherwise

Let ε be the classification error rate of the bipartition model.

E(|�Ŷc|)= (1−ε)(1−E(|Y |)+ε(1+E(|Y |))
=1+(2ε−1)E(|Y |)�1

(
when ε=0.5

1+(1−1)|Y |=1

)
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The expectation of the absolute error is bounded below one when
we use a weak classifier for the bipartition that simply guesses a
label randomly.

The variance of the absolute error is

Var(|�Ŷc|)=E(|�Ŷc|2)−(E(|�Ŷc|))2

=4E(|Y |)2ε(1−ε),

which turns out to be the variance of Bernoulli trial scaled with the
square of the expected scale of Y . Again, this is bounded by 1 when
ε=0.5 and E(|Y |)=1.

Next, we consider the expectation of Ŷc, which is interesting
because we can infer the expected difference between regression
(equation 1) and bipartition (equation 2).

�Ŷc =Y − Ŷc =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1−Y if Y �0 and correctly classified

−1−Y if Y <0 and correctly classified

−1−Y if Y �0 and incorrect

1−Y if Y <0 and incorrect

Let P+ =Pr(Y �0|X ), the probability that Y �0 and Y =E(Y |X ).
We have

E(�Ŷc)=(1−ε)P+(1−Y )+(1−ε)(1−P+)(−1−Y )+
εP+(−1−Y )+ε(1−P+)(1−Y )

=(2−4ε)P+−1+2ε−Y .

The result above implies that when we have a weak classifier
ε→0.5, E(�Ŷc)→−Y and E(Ŷc)=Y +E(�Ŷc)=0. That is,
regardless of the population, random guessing will not give any
distinction between any populations and provide no discerning
power. In contrast, when we have a perfect classifier with ε→0,
E(Ŷc)→2P+−1, which is to scale the true probability of Y �
0 for the population to [−1,1], perfectly matching our desire.
Consequently, given an accurate bipartition algorithm, FABS-A can
reasonably approximate effectiveness of drugs without exact scores
the effectiveness.

3.2 Performance of ranking
We compared the performance of FABS-NC′ with four other
baselines that has been used in HCS—center ranking PCA ranking
and graph transition energy method (GTEM) (Lin et al., 2010).
Center ranking first finds the center, which can be the mean, the
median or any other measure of the center, of all feature vectors
associated with a particular drug or an extreme case, then calculate
the distance, such as Euclidean distance, between all pairs of centers.
The ranking of the drugs are performed by ordering the drugs
according to the centers of the closest to the farthest from the center
of the desired extreme case (such as the completely fragmented
state for toxicity criterion). PCA ranking is similar to center ranking,
except it first projects the feature vectors onto the first few important
principal components, then performs center ranking. GTEM (Lin
et al., 2010) is also a graph-based approach. GTEM defines graph
transition energy as the distance metric and utilizes a spectral
graph theoretic regularization to transform the feature space so that
extreme cases will be separated widely before ranks populations of
cells under different treatments.

In addition to use NC′ [solved with Hochbaum’s PseudoFlow
algorithm, HPF, the implementation of which is obtained from

(Chandran and Hochbaum, 2009; Hochbaum, 2008, 2010a)] as
our bipartition algorithm in the FABS framework, we also tested
other bipartition procedures. One classical technique is the SVM
(Burges, 1998; Cristianini and Shawe-Taylor, 2000). When using
SVM for FABS, we satisfy Requirement 1 by setting training data
as the positive and negative controls: all R1 points are in S and
all R2 points are in S. To see the performance of this particular
implementation of (FABS-SVM), the kernel used is radial basis
function and the parameters are the following: C value is 104 and the
kernel parameter is 1. The implementation package used is LIBSVM
(Chang and Lin, 2011).

Another approach, often used in image segmentation is based
on finding the Fielder eigenvector of the graph (referred to as the
spectral technique) as a heuristic solution for the normalized cut
problem (Shi and Malik, 2000). The spectral technique however
is unsupervised, and thus does not satisfy Requirement 1. To
resolve this issue, we modified the weights of the graph to ensure
that Requirement 1 is satisfied. The implementation package used
is Normalized Cuts Segmentation Code, Timothee Cour (2004).
However, its performance was much worse than all other methods
and was removed from the results.

The comparative study that we performed used the median for all
center measures and Euclidean distance for all distance measures.
The edge weights between two feature vectors vi and vj increase
or decrease in the opposite direction with respect to the distance
between them and is quantified by wij =e−||vi−vj||2+ε, for 0<ε�1.

Prior to feeding the input feature vectors extracted from the
images into FABS-A, we first pre-process these vectors to transform
them from a high-dimension space to a space of fewer dimensions.
In this process, the data are reduced to fewer dimensions, and we
only preserve the dimensions that are of the most significance to
our experiment. The dimension reduction is performed by using
PCA and the number of principal components used is determined by
adding the largest number of most significant principal components
that explain up to 80% of the total variation in the dataset considered.
We also tested whether applying GTEMs feature transformation step
as a preprocessing step before applying FABS-NC′ may improve the
performance.

To guarantee statistical validity of our comparison, we
subsampled the available cell images from the entire database, i.e.
we drew samples with replacement for certain percentage from
the database to test methods. The subsampling percentages 30, 60,
70 and 80% tried for drug images (501 images). For each fixed
drug percentage, we changed percentages of labeled controls by
increasing from 10% to 100% to see the effects of the number of
labeled controls on the final prediction accuracy of the ranking (495
images in total). The subsampling trials are performed 1000 times for
each combination. The prediction accuracy of any ranking method is
the fraction of correctly ranked trials—this can be determined, since
we have the ground truth—out of the grand total of 1000 trials.

Figures 3 and 4 graphically summarize the results in the
experiment. Each graph shown is for 30, 60, 70 or 80% fixed drug
percentage (testing percentage). The x-axis is the percentage of
labeled controls used, whereas y-axis displays the average prediction
accuracy over 1000 trials described in Section 3.2.

Each curve in the graphs indicates a particular ranking method—
they include FABS-NC′, FABS-SVM, Center ranking, PCA ranking,
GTEM. The results of FABS-Spectral is poor with our particular
implementation and from the figures. The vertical lines in Figures 3
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Fig. 3. The accuracy comparison among different ranking methods. The
vertical bars in the graph are 95% confidence intervals. The testing
percentages used are: 30 and 60%

Fig. 4. (Continued) the testing percentages used are: 70 and 80%

and 4 are 95% confidence intervals for the accuracy of each ranking
method.

For all testing percentages, the prediction accuracy of FABS-
NC′ steadily increases as more labeled controls become available,
especially when more images are tested (70 and 80%)—the slope
increases then levels off from the left to the right. The overall
accuracy is nearly 98% for all graphs at the end of the x-axis,
indicating that the method is highly accurate with as little as 500
labeled controls. It is also robust considering that the trend of
prediction curve remains the same for different testing percentages.

Moreover, we can see that FABS-NC′ has an advantage over
other ranking methods for this particular mitochondria dataset. Its
curve is often above all other methods, except for 10% labeled
controls; testing percentage 70%: 70% labeled controls; and testing
percentage 80%: 10% and interval 40–50%. Notice that for the
low number of testing (30%), FABS-NC′ outperforms all other
methods—when using all labeled controls for ranking, it is over
half more accurate than the next best algorithm.

Overall, FABS-SVM also performs well, although sometimes
trailing behind FABS-NC′ by a large margin. PCA ranking
performs poorly when testing images are few (30%). Center
ranking is generally of low quality, giving small accuracy for

Table 1. Matrices of GDM between different pairs of
drugs for different implementations of FABS-SVM and
FABS-NC′

FABS-SVM squamocin Z-IETD Z-LEHD
squamocin 0 ∞ ∞
Z-IETD ∞ 0 3.43
Z-LEHD ∞ 3.43 0

FABS-NC′
squamocin 0 ∞ ∞
Z-IETD ∞ 0 4.36
Z-LEHD ∞ 4.36 0

all testing percentages. Notice, however, GTEM gives the best
results when the number of labeled controls is very low (10%),
indicating its usefulness when training data are few—neverthless,
its advantage dimishes as more labeled training cases becomes
available, producing inaccurate rankings comparing to FABS. The
results show that applying the feature transformation step of GTEM
as a pre-processing step of FABS-NC′ performs better than GTEM
but not as well and as stable as FABS-NC′.

The experimental results suggest that, overall, FABS with
NC′ implementation is the best ranking method among all for
this particular mitochondria database. Remarkably, FABS-NC′
generalizes better than any other methods as more training and test
examples become available.

3.3 Significance
Table 1 displays the significance score −logP between different
pairs of drugs for FABS-NC′ and FABS-SVM implementations
when we sub-sampled 30% of the labeled controls and 30% of
drug treatment results. An infinity score (∞) is obtained when P
is very close to zero, indicating that the distance between the two
corresponding drugs is very large. The results show that FABS-NC′
is more discriminant then FAB-SVM because the significance scores
for FABS-NC′ are larger than those for FABS-SVM.

We also performed a Monte Carlo simulation to test whether the
observed difference of the FABS-NC′ scores of 30% of Z-IETD and
Z-LEHD data using 80% of control data for training is significant
against pairs of null data sets sampled from the same drug treatment
populations. In 1000 random resamplings, no difference of the scores
of the null data set pairs is higher than the observed score, yielding
a close to zero P-value.

3.4 Comparison of running time
In this section, we compare the running times of three FABS-A
procedures, where A here, as mentioned in previous sections, is
one of bipartition algorithms including NC′ (Hochbaum, 2010b),
SVM (Cristianini and Shawe-Taylor, 2000) and Spectral (Shi and
Malik, 2000), among themselves and against PCA ranking, Center
ranking and GTEM. The specification of the computer environment
for this comparison is a Windows computer with 2.4GHz Intel(R)
Core(TM)2 Duo CPU 2.40 GHz and 2 GB memory.

Figures 5 and 6 display running times of various methods,
excluding the times for subsampling—which have a median of 0.01
second, maximum of 0.02 second and minimum of 0.006 second—
for different testing percentages: x-axis increases with the number
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Fig. 5. The running time comparison among different methods. The testing
percentages used are: 30 and 60%

Fig. 6. (Continued) the testing percentages used are: 70 and 80%

of positive controls and negative controls used, representing more
and more training data becoming available, while y-axis is the
running time. The six curves in the figures are the different methods
including various implementations of FABS-A—notice that FABS-
NC′ is represented by the thickest curve. There are 501 testing data:
265 Z-IETD and 291 Z-LEHD.

From the figures, among FABS-A, we can observe that for
all testing percentages considered, FABS-Spectral takes the most
running time, lagging behind both FABS-NC′ and FABS-SVM by
large margins. For FABS-NC′, the running time steadily lengthens
as the number of positive and negative controls increases, however,
not as dramatic as FABS-SVM, whose running time, shorter than
these of other procedures initially, grows exponentially—in one case
(testing percentage 70%), running 100% of positive and negative
controls requires around 1000 times more seconds than running
10% of positive and negative controls. This is to compare with
FABS-NC′: for the same testing percentage, using all positve and
negative controls only requires twice as much running time than
that of using only 10%—10% corresponds to around 50 controls in
total, a relative small number of images that can be obtained through
HCS. This observation, combined with the results from Section 3.2,
indicates that even though FABS-SVM has the initial advantage
for running time, this is off-set by the initial more accurate results

produced by FABS-NC′. Moreover, it appears that FABS-NC′ scales
much better with increasing input data than FABS-SVM. Looking
at the other methods besides FABS-A, we can observe that GTEM
takes relatively long time on the par with FABS-Spectral—this is in
contrast with PCA ranking and center ranking whose running times
are the lowest among all methods: this result is expected, since
FABS-A use PCA for pre-processing (i.e. doing PCA is already
added as a part of computational costs), therefore FABS-A can
only take longer time than PCA ranking. However, from Section
3.2, it is clear that this extra computational costs bring significant
improvements in accuracy, which combined with scalability of
FABS-NC′, makes FABS-NC′, overall, an attractive candidate for
ranking this database.

4 DISCUSSION
In this article, we describe a new drug ranking framework called
FABS. It is graph based, producing a single scalar score for each
drug for ranking. The formulation and solution sidesteps many
pitfalls of other traditional methods. The article also reports FABS-
NC′ semi-supervised implementation and its comparative study.
Not only is this implementation better than four other considered
methods, it also outperforms FABS-SVM and FABS-spectral
implementations on a mitochondria databases. This preliminary
result suggests that FABS-NC′ is good for ranking toxicity of drugs
targeting mitochondria for a specific database.

There are some advantages of our measure. First, FABS is one-
dimensional, that is, a single scalar, giving an unambiguous way to
rank drugs. Its computation considers all samples of each drug and
uses a fraction as the final score. This diminishes the effect of outliers
and noise, because, if the number of images is large for each drug,
as in the case of HCS, outliers, which are few in number, can not
influence the result—a fraction, in a significant way. This similarly
is the reason for noise reduction. More importantly, our measure
FABS-NC′ is acquired through a combinatorial algorithm, which is
efficient. This is essential since the number of cells observed in a
HCS is large and the applicability of any metric learning algorithm
is greatly reduced if it cannot process them sufficiently fast. The
last noteworthy advantage of our framework is that the training data
for the semi-supervised formulation are the positive and negative
controls, which are easily recognizable and obtained without time-
consuming annotation, sidestepping the limitation of training sample
size of many metric learning algorithms.

Our future work includes to investigate whether the introduction
of node weights, in our construction of the graph in Step
2 of Algorithm 1 will benefit the prediction results. This is
especially relevant because of a recent development for solving
generalized version of NC′ utilizing node weights (Hochbaum,
2010c). Moreover, we could also expand our FABS application into
other criteria and situations for determining the ranking of the drugs
and test on more databases to see the effectiveness of our method
as they become available.
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