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Abstract
Calcium imaging is a key method in neuroscience for investigating patterns of neuronal activity in vivo. Still,
existing algorithms to detect and extract activity signals from calcium-imaging movies have major shortcomings.
We introduce the HNCcorr algorithm for cell identification in calcium-imaging datasets that addresses these
shortcomings. HNCcorr relies on the combinatorial clustering problem HNC (Hochbaum’s Normalized Cut), which
is similar to the Normalized Cut problem of Shi and Malik, a well known problem in image segmentation. HNC
identifies cells as coherent clusters of pixels that are highly distinct from the remaining pixels. HNCcorr
guarantees a globally optimal solution to the underlying optimization problem as well as minimal dependence on
initialization techniques. HNCcorr also uses a new method, called “similarity squared”, for measuring similarity
between pixels in calcium-imaging movies. The effectiveness of HNCcorr is demonstrated by its top performance
on the Neurofinder cell identification benchmark. We believe HNCcorr is an important addition to the toolbox for
analysis of calcium-imaging movies.
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Introduction
Calcium imaging has become a standard method to

measure neuronal activity in vivo (Stosiek et al., 2003).
Using genetically encoded calcium indicators and fast
laser-scanning microscopes, it is now possible to record

thousands of neurons simultaneously. However, the man-
ual postprocessing needed to extract the activity of single
neurons requires tens of hours per dataset. Consequently,
there is a great need for automated approaches for the
extraction of neuronal activity from imaging movies.
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Significance Statement

Calcium imaging is a method for recording neuronal activity at a cellular resolution that requires automated
approaches to identify cells and their signals. HNCcorr is a novel algorithm that identifies these cells
successfully and efficiently. HNCcorr is unique in that it addresses an optimization model and delivers a
guaranteed globally optimal solution, thus ensuring a fully transparent link between the input data and the
resulting cell identification. This contrasts with existing state-of-the-art approaches that produce only
heuristic solutions to the underlying optimization model, and consequently may miss cells due to the
suboptimality of the generated solutions.
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There are three classes of existing techniques for cell
identification in calcium-imaging movies: semi-manual re-
gion of interest (ROI) detection (Kaifosh et al., 2014;
Driscoll et al., 2017), shape-based detection algorithms
[Pachitariu et al., 2013; Apthorpe et al., 2016; Klibisz et al.,
2017; S. Gao, (https://bit.ly/2UG7NEs)], and matrix factor-
ization algorithms (Mukamel et al., 2009; Pnevmatikakis
and Paninski, 2013; Pnevmatikakis et al., 2013a, 2016; ;
Diego-Andilla and Hamprecht, 2014; Maruyama et al.,
2014; Pachitariu et al., 2016; Levin-Schwartz et al., 2017).
Semi-manual ROI detection techniques rely on the user’s
input for detecting and segmenting cells. This process
has been reported to be highly labor intensive (Resendez
et al., 2016) and may miss cells with a low signal-to-noise
ratio or a low activation frequency. Shape-based identifi-
cation methods locate the characteristic shapes of cells
using deep learning [Apthorpe et al., 2016; Klibisz et al.,
2017; S. Gao, (https://bit.ly/2UG7NEs)] or dictionary
learning (Pachitariu et al., 2013). Shape-based techniques
are typically applied by compressing the movie into a
summary image obtained by averaging over the time
dimension. The third class of techniques uses a matrix
factorization model to decompose a movie into the spatial
and temporal properties of the individual neuronal signals.
The matrix factorization algorithm CNMF (Pnevmatikakis
et al., 2016) is currently prevalent for the task of cell
identification.

We propose here a vastly different approach, called
HNCcorr, based on combinatorial optimization. The cell
identification problem is formalized as an image segmen-
tation problem where cells are clusters of pixels in the
movie. To cluster the cells, we use the clustering problem
Hochbaum’s Normalized Cut (HNC) (Hochbaum, 2010,
2013). This problem is represented as a graph problem,
where nodes in the graph correspond to pixels, edge
weights correspond to similarities between pairs of pixels,
and an objective function assigns a cost to any possible
segmentation of the graph. The objective function used in
HNC provides a trade-off between two criteria: one crite-
rion is to maximize the total similarity of the pixels within
the cluster, whereas the second criterion is to minimize
the similarity between the cluster and its complement.
Highly efficient solvers exist to solve HNC optimally
(Hochbaum, 2010, 2013).

The name HNCcorr is derived from two major compo-
nents of the algorithm: the clustering problem HNC
(Hochbaum, 2010, 2013), and the use of a novel similarity
measure derived from correlation, named (SIM)2 for “sim-
ilarity squared”.

The idea of (SIM)2 is to associate with each pixel a
feature vector of correlations with respect to a subset of
pixels, and to determine the similarities between pairs of
pixels by computing the similarity of the respective two
feature vectors. An important feature of (SIM)2 over regular
pairwise correlation is that it considers any two back-
ground pixels, pixels not belonging to a cell, as highly
similar, whereas correlation deems them dissimilar. This
improves the clustering since it incentivizes that back-
ground pixels are grouped together.

An advantage of HNCcorr compared with most alterna-
tive algorithms is that the HNC optimization model used to
identify cells is solved efficiently to global optimality. This
makes the output of the optimization model transparent in
the sense that the effect of the model input and parame-
ters on the resulting optimal solution is well understood. In
contrast, most other approaches, such as matrix factor-
ization algorithms, rely on intractable optimization mod-
els. This means that the algorithms cannot find a global
optimal solution to their optimization model. Instead, they
find a locally optimal solution close to the initial solution.
As a result, the algorithms provide no guarantee on the
quality of the delivered solutions and cells may remain
undetected. See Discussion for more details.

The experimental performance of the HNCcorr is dem-
onstrated on the Neurofinder benchmark (CodeNeuro,
2016) for cell identification in annotated two-photon
calcium-imaging datasets. This benchmark is currently
the only available benchmark that objectively evaluates
cell identification algorithms. On this benchmark,
HNCcorr achieves a higher average F1-score than two
frequently used matrix factorization algorithms CNMF
(Pnevmatikakis et al., 2016) and Suite2P (Pachitariu et al.,
2016).

We further provide a comparison between HNCcorr and
a procedure based on spectral clustering in which we
demonstrate that HNCcorr attains a higher F1-score. We
also present a running time comparison among the
MATLAB implementations of HNCcorr, CNMF, and Suite2P.
HNCcorr has similar running time performance as Suite2P
and is approximately 1.5 times faster than CNMF.

A MATLAB implementation of HNCcorr is available at
https://github.com/quic0/HNCcorr. A Python implemen-
tation of HNCcorr is forthcoming.

Materials and Methods
The HNCcorr algorithm

The HNCcorr algorithm addresses the problem of cell
identification in calcium-imaging datasets. The goal is to
identify fluorescence sources, such as neuronal cell bod-
ies. HNCcorr aims to find active cells that are character-
ized by a distinct time-varying signal. HNCcorr finds a
single cell by solving a clustering problem called HNC.
The solution is a cluster of pixels that are highly similar to
each other but distinct from the pixels not in the cluster.

The output of the HNCcorr algorithm is the spatial
footprint for each detected cell in a motion-corrected
movie. The spatial footprint is a set of pixels that repre-
sents the location of the cell in the imaging plane of the
movie. These footprints are used for signal extraction
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(e.g., by averaging the intensity of the pixels in the foot-
print and subtracting an estimated background signal or
with the use of more advanced algorithms; Vogelstein
et al., 2010; Grewe et al., 2010; Pnevmatikakis et al.,
2013b; Theis et al., 2016; Jewell and Witten, 2018).

The HNCcorr algorithm identifies all cells in the dataset
by processing a set of positive seeds. A positive seed
represents a potential location of a cell. For each positive
seed, the algorithm repeats the following three phases: (1)
input preparation: construct the similarity graph as the
input for the HNC clustering problem; (2) HNC clustering:
optimally solve the HNC clustering model on the similarity
graph; and (3) postprocessing: evaluate the output pro-
duced by HNC to decide whether a cell was detected and
to identify the footprint of a cell.

We now describe each part in detail. We first discuss
how the input for the HNC clustering problem is prepared.
Subsequently, we define the HNC clustering problem, the
role of each of the model inputs, and the solution tech-
nique used to solve the problem. To conclude, we de-
scribe how the output produced by the HNC problem is
postprocessed.

Input preparation
The input for the HNC clustering problem consists of

the seeds and the similarity graph with the corresponding
similarity weights. Below we describe how these inputs
are constructed.

Seed selection
The positive seeds each indicate a potential location of

a cell in the dataset. They are generated in advance and
processed one at a time. With each positive seed the goal
is to identify a new cell. The positive seed indicates the
cell of interest. To ensure that this potential cell is seg-
mented, the positive seed must be contained in the can-
didate clusters returned by the HNC problem.

A positive seed is a superpixel, a square of k � k pixels
in two-dimensional datasets. k is typically set to 3 or
determined by validation on an annotated dataset. The set
of positive seeds is generated by a seed selection proce-
dure. By default, HNCcorr uses a procedure that selects
pixels with the highest average correlation to their neigh-
boring pixels. It is described in detail in the algorithmic
implementation section. Alternatively, it is also possible to
enumerate all superpixels of a given size.

In addition to the positive seed, the HNC problem also
requires a set of negative seeds. These negative seeds
are pixels that cannot be selected as part of the cluster in
the HNC problem. The use of negative seeds ensures that
not all pixels are selected. The negative seeds are se-
lected uniformly from a circle centered at the positive
seed. The radius of the circle is chosen such that the any
cell that contains the positive seed is inside the circle. See
Figure 3B for an example of both the positive seeds and
the negative seeds.

Generating patches
For each positive seed, we limit the data that is consid-

ered to a square of pixels centered at the positive seed.
This square of pixels is referred to as a “patch.” It is large
enough to ensure that any cell is fully contained in the

patch. Its size is thus dependent on the spatial resolution
of the data. Note that patches that correspond to different
positive seeds may overlap.

Graph construction
For a given patch with positive and negative seeds, we

construct a graph G � (V, E) consisting of a set of nodes,
denoted by V, and a set of edges that connect pairs of
nodes, denoted by E. The set of nodes V is the set of
pixels in the patch. The construction of the edge set E is
described after we discuss the similarity weights associ-
ated with each edge.

Similarity weights
Every edge �i, j��E has an associated similarity weight

wij��0, 1�. This similarity weight wij measures the similarity
between pixels i and j with higher values indicating in-
creased similarity between the two pixels.

A common approach to assess the similarity between
two pixels is to measure the correlation between their
fluorescence signals across all frames of the movie. To
express this mathematically, we define xu��T as the flu-
orescence vector of pixel u�V for a movie consisting of T
frames. The correlation corr�u, v� between pixels u and v
is defined as follows:

corr(u, v) �
1

T � 1
(xu � �̂(xu))T(xv � �̂(xv))

�̂(xu) �̂(xv)
,

where �̂�x� and �̂�x� are, respectively, the sample mean
and sample standard deviation of the vector x.

Correlation effectively measures the similarity between
two pixels from the same cell, since such pixels have
correlated fluorescence patterns due to the shared signal
of the cell. For another important group of pixels, the
background pixels, correlation is less effective. The back-
ground pixels are the pixels that do not belong to a cell. As
such, background pixels are at best weakly correlated
with each other and with other pixels. Yet the lack of
strong correlation with other pixels is effectively what
characterizes background pixels.

We can use this observation to strengthen the similarity
measure and to aid the clustering. In other words, the
background pixels are similar to each other in the pattern
of being weakly correlated to every other pixel, whereas
pixels that belong to a cell are highly correlated to other
pixels in the same cell. Instead of computing the similarity
between pixels directly based on their correlation, we
compare how pixels correlate with all pixels.

Figure 1 illustrates this. For a small patch, six pixels are
marked in red and are shown with their pairwise correlation
to all pixels in the patch. We refer to these images as
correlation images. Two pixels in each of the two visible cells
are marked as well as two background pixels. The correla-
tion image for each pixel (e.g., pixel 1) shows the pairwise
correlation between pixel 1 and every pixel in the patch,
represented by the color of the pixel, with a lighter color
corresponding to higher correlation. The following observa-
tions are drawn from the figure: pixels belonging to the same
cell have nearly identical correlation images (see pixels 1 and
2 and pixels 3 and 4). Furthermore, background pixels also
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have nearly identical correlation images, although the pixels
themselves are not correlated (see pixels 5 and 6).

Similarity between background pixels can thus be cap-
tured by comparing their correlation images, whereas
correlation or other standard similarity measures would
not recognize this. Comparing correlation images instead
of computing signal correlation also boosts the similarity
between pixels in cells with a low signal-to-noise ratio,
such as the cell containing pixels 3 and 4. Although pixels
3 and 4 are only weakly correlated, their correlation im-
ages are nearly identical.

This approach is an application of a novel technique for
computing pairwise similarities that we call (SIM)2. The idea
of (SIM)2 is to determine the similarity between a pair of
objects (here pixels), not by directly comparing their fea-
tures, but rather by comparing the similarities of the ob-
jects to a set of reference objects, called the “reference
set”. The resulting pairwise similarities between objects
can be interpreted as a similarity derived from other sim-
ilarities, hence the name (SIM)2.

Our use of (SIM)2 here consists of the following two-step
procedure: in the first step, HNCcorr evaluates the pair-
wise correlation between each pixel and all pixels in the
patch. The resulting vector of correlations Ri is the feature
vector of pixel i. Assuming that there are n pixels in the
patch, Ri is a vector of dimension n. Mathematically, the
kth element of the feature vector Ri of pixel i�V is defined
as Ri�k� � corr�i, k�. Alternatively, the feature vector can
be interpreted as a vector representation of the correla-
tion image of pixel i or as the row of pixel i in the pixel-
to-pixel correlation matrix defined over the pixels in the
patch.

In the second step, the similarity weights wij are com-
puted for every edge �i, j��E as the Gaussian similarity
between the feature vectors, as follows:

wij � exp (���Ri � Rj�2
2) , (1)

where � is a scaling parameter, which is typically set to 1.
When the correlation images of pixels i and j are identical,
then wij � 1. wij approaches zero when the correlation
images are highly dissimilar. The proposed method is
independent from the length of the movie except for the
calculation of the correlation coefficients.

Selecting relevant similarities with sparse computation
A naive approach for selecting the edge set E is to

connect every pair of pixels. Instead, HNCcorr relies on a
technique called sparse computation (Hochbaum and
Baumann, 2015; Baumann et al., 2016) that recognizes
the relevant pairwise similarities without first computing
all pairwise similarities. Sparse computation effectively
removes similarities that it recognizes as negligible
without computing them first. For each pairwise simi-
larity identified as negligible, there is no edge connect-
ing the respective pair, rendering the graph sparse. An
example of the effect of sparse computation is shown in
Figure 2.

The use of sparse computation provides various advan-
tages, such as improving the running time. For general
machine-learning problems, sparse computation signifi-
cantly reduces the running time of a similarity-based clas-
sifier at almost no loss in accuracy (Hochbaum and
Baumann, 2015; Baumann et al., 2016). For HNCcorr, we
observe that sparse computation improves the running
time by at least one order of magnitude compared with
using a complete similarity graph.

The sparse computation method considers each pixel
i�V as an object represented by its feature vector Ri, as
defined previously. Sparse computation first projects
these feature vectors onto a low-dimensional space of
dimension p using a fast approximation of principal com-
ponent analysis (PCA) (Drineas et al., 2006; Hochbaum

Figure 1. Visualization of the correlation images of six pixels. The correlation image is a two-dimensional visualization of the feature
vector Ri of pixel i (e.g. R1 for pixel 1). The color (value) of each pixel shown in each correlation image is the pixel-to-pixel correlation
between that pixel and the pixel marked in red. Lighter colors represent higher correlations, with the correlation scale truncated at
zero. The patch is taken from the Neurofinder 02.00 training dataset and contains two cells. Pixels 1 and 2 belong to the same cell,
pixels 3 and 4 belong to the same cell, and pixels 5 and 6 are background pixels. Although the pairs of pixels 1 and 2, pixels 3 and
4, and pixels 5 and 6 are not always highly correlated, their correlation images are nearly identical.
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and Baumann, 2015). The low-dimensional space is then
subdivided into a grid with � sections per dimension, resulting
in a total of �p grid blocks. Pairs of pixels are considered
relevant similarities if the pixels fall in the same or adjacent grid
blocks in the low-dimensional space. These pairs of objects are
selected for the edge set E. For these pairs, we will compute
the pairwise similarities.

The HNC clustering model
The optimization model used to identify the footprint of

a single cell is the HNC model (Hochbaum, 2010, 2013).
HNC is closely related to a well-known optimization prob-
lem called the Normalized Cut, from the field of image
segmentation (Shi and Malik, 2000). The input to HNC is a
patch, the corresponding graph G � (V,E), and seeds. The
HNC model is defined for a partition of the pixels into
the sets S and S� � V \ S. The cluster S will represent the
spatial footprint of a cell and must contain the positive
seed. The set S� � V \ S consists of the remaining pixels
and must contain the negative seeds.

The HNC problem aims to find a cluster S such that is
coherent and distinct from S� . Distinctness is attained by
reducing the similarity between pixels in S and S� . Coher-
ence is achieved by maximizing the similarity between the
pixels in the set S. The HNC problem trades off these two
objectives as follows:

min
A�S�V �

[i,j]�E,

i�S,j�S�

wij
È

Distinctness of S

� � �
[i,j]�E,

i�S,j�S

wij
È

Coherence of S

.

The relative weight of the two objectives is determined
by � 	 0. S�(�) is used to denote the optimal cluster for
each value of �. The algorithm for solving HNC simulta-
neously determines the optimal solutions for all possible
values of �, as explained below.

While the HNC problem is solved efficiently, the Nor-
malized Cut problem is an NP-Hard problem (Shi and
Malik, 2000). This implies that it is extremely unlikely that

an efficient algorithm exists that optimally solve the Nor-
malized Cut problem. Instead, spectral clustering is often
used as a heuristic. Although spectral clustering is a
popular method, Hochbaum et al. (2013) and Hochbaum
(2013) demonstrates that HNC dominates spectral clus-
tering in terms of visual quality and practical efficiency for
a set of benchmark images taken from the Berkeley Seg-
mentation Dataset (Martin et al., 2001).

The algorithm to solve the HNC problem can find the
optimal solutions for all values of � simultaneously (Hoch-
baum, 2010, 2013), removing the need for tuning the �
parameter. This algorithm utilizes parametric minimum
cut/maximum flow algorithms (Gallo et al., 1989; Hoch-
baum, 2008). An intuitive explanation of why it is possible
to find the solutions for all values of � is that the sets S�(�)
were shown to be nested (Goldberg and Tarjan, 1988;
Hochbaum, 2008, 2010). That is, if �1 
 �2 then
S ���1��S ���2�. Therefore, there are at most n � �V� such
distinct sets, where n is the number of pixels in the patch.
Each of these nested sets S1

��S2
����S�

� has an associ-
ated �-interval ��i, �i�1� for which the set is optimal. These
sets form the output of the HNC algorithm and serve as
candidates for the footprint of the cell.

Postprocessing
As output of the HNC problem, we obtain all nested

optimal sets S1
��S2

���S�
�. These clusters are candidates

for the footprint of a cell. The postprocessing algorithm
decides whether a cell was detected and identifies its
spatial footprint based on the candidate clusters Si

� for
i � 1, �, �.

In the current implementation, the postprocessing tech-
nique decides whether a cell was found based on the
sizes of the candidate clusters. A cluster Si

� is discarded if
the number of pixels in the cluster, �Si� falls outside a
given size range. In case all clusters are discarded, then
the algorithm concludes that no cell was detected. In case
one or more candidates remain, each remaining cluster Si

is compared to a preferred cell size. The candidate cluster
that is closest in size to the expected cell size is selected

as the spatial footprint of the cell. We use 	�Si� for this

Figure 2. Sparse computation constructs a sparse similarity graph. Comparison of a complete similarity graph and the similarity graph
constructed by sparse computation for an example patch. For the purpose of illustration, the nodes are positioned based on the
two-dimensional PCA projection of the feature vectors of pixels offset by a small uniformly sampled perturbation. A, Mean intensity image
of the patch with the outline of two cells marked in red and blue. B, Complete similarity graph with an edge between every pair of pixels.
For the purpose of illustration, only 10,000 randomly sampled edges are shown. C, Sparse similarity graph constructed by sparse
computation with a three-dimensional PCA projection and a grid resolution of � � 25. Two clusters of pixels (marked with red and blue
rectangles) are identified by Sparse Computation. These two clusters match the spatial footprints of the two cells shown in A.
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comparison since this best reflects the scaling of the area
of a circle. More complex postprocessing techniques
based on convolutional neural networks have been ex-
plored as well. However, preliminary experiments showed
no substantial improvements.

Summary
The main steps of the HNCcorr algorithm are summa-

rized in Figure 3.

Algorithmic implementation of HNCcorr
We provide a detailed algorithmic description of HNC-

corr for reproducibility of the results. It discusses the
implementation of (SIM)2, the main routine of HNCcorr for
segmenting a single cell, the seed selection method, and
the postprocessing of the segmentations. A MATLAB im-
plementation is available on GitHub at https://github.com/
quic0/HNCcorr. A Python implementation is forthcoming.

(SIM)2 implementation
We extend here the description of how HNCcorr uses

(SIM)2. Instead of computing the pairwise correlations with
respect to all pixels in the patch, we compute only the
pairwise correlation with respect to a sampled subset of
pixels. That is, the reference set consists of a random
subset of pixels in the patch. This change is made to
reduce the running time of the feature vector computa-
tion. It has a negligible effect on the algorithmic perfor-
mance if at least a fourth of the pixels are sampled for the
reference set.

The implementation has the following three steps:
first, we sample a subset of the pixels in the patch to
form the reference set; second, we compute, for every
pixel i in the patch, the feature vector Ri consisting of
the pairwise correlations to the pixels in the reference
set; and third, we compute the Gaussian similarity be-
tween Ri and Rj for every edge �i, j��E. We now de-
scribe each step in more detail.

For the first step, recall that V is the set of pixels in a
patch and let RS be the reference set. The reference set
RS consists of pixels randomly sampled with replacement
from V. If �V� denotes the number of pixels in the patch
and  is the sampling rate, then the reference set RS
consists of pixels r1, �, rk for k � �V�.

In the second step, we compute the feature vectors
Ri��|RS| where �RS� is the size of the reference set. The
hth component, for h � 1, �, k of the feature vector Ri of
pixel i is defined as follows:

Ri[h] � corr(i, rh) .

In the third step, the similarity weight associated with
edge �i, j��E is computed. This weight is defined as fol-
lows:

wij � exp (���Ri � Rj�2
2) ,

where � is typically set to 1. Note that wij � corr�i, j�.

Figure 3. Overview of the HNCcorr algorithm. The top and bottom rows, respectively, summarize the preprocessing steps and the main steps
of the algorithm. A, Average intensity image of the input dataset consisting of a calcium-imaging recording. B, Average intensity image of a patch
constructed for a positive seed (green) and the corresponding negative seeds (red). C, Description for computing the pairwise similarity weight
between two pixels. D, HNC is the clustering model solved to segment a single cell. E, Optimal clusters for the HNC problem as a function of �.
Black pixels are selected for the cluster, denoted by S�(�). F, Visualization of the postprocessing step. Clusters that are too small/large are
discarded. The remaining cluster closest to the preferred size is selected as the footprint of a cell. G, Output for a single patch; the footprint of a
cell if a cluster was selected, or “No cell” if all clusters are discarded.
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HNCcorr: single-cell segmentation
The implementation of how HNCcorr processes a single

seed is described in algorithm 1.
The default value of  � 32% was determined based on

an experimental evaluation of the cell detection perfor-
mance and the running time performance. The value of
32% provides a substantial improvement in running time
compared to  � 100% and almost no loss in cell detec-
tion accuracy.

Seed selection algorithm
The HNCcorr algorithm allows for any, possibly paral-

lelized, seed selection procedure. The seed selection pro-
cedure (algorithm 2) used here is an enumeration
algorithm with a few speedups. The algorithm first parti-
tions the pixels into ngrid � ngrid grid blocks, where ngrid �
5 by default. Next, it selects one pixel per grid block with
the highest average correlation to its eight neighboring
pixels. These selected pixels are sorted from high to low
in terms of average correlation to its neighborhood. The
top pseed percentage of pixels are selected as the centers
of the positive seeds. Typically, pseed is set to 40%. This
value was decided based on an empirical study. This
study indicates that the benefit of increasing it above 40%
is small for most datasets, whereas it increases running
time. Note that this method is equivalent to full enumer-
ation if we partition the pixels into a grid blocks with a
single pixel (ngrid � 1), and all selected pixels are kept
(pseed � 100%).

Size-based postprocessor
The current implementation of HNCcorr postprocesses

each seed and the corresponding segmentations based
on the size of the segmentations. The implementation is
defined in algorithm 3.

Effect of parameters in HNCcorr
Here we describe the effect of the parameters on the

performance of HNCcorr in terms of cell detection quality
and running time.

An important set of parameters for adapting HNCcorr to
other datasets is a set that relates to the size of the cell.
These parameters depend on the spatial resolution of the
movie. These parameters are the patch size, the circle
radius of the negative seeds, and the postprocessor pa-
rameters. The patch size m should be set such that cells
containing the center of the patch are fully contained in
the patch. The patch size m should not be set much
larger, since it determines the size of the similarity graph
and has a substantial impact on the running time. The
radius � should be less than half the patch size, m / 2.
This ensures that the negative seeds fall inside the patch.
The radius � should be chosen close to m / 2, so a cell is
contained in the circle. The radius � has no substantial
impact on the running time or on the quality of HNCcorr,
unless it is set too small and cells extend beyond the
circle. The postprocessor parameters nmin, nmax deter-
mine the size thresholds for the size of cell. If a segmen-
tation falls outside this range, then it is discarded. If the

Algorithm 1: HNCcorr - Single cell segmentation.
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range is set too small, then correct segmentations may
be discarded. Similarly, the number of false positives
(FP) may increase if the range is too large. The post-
processor parameters do not have a major impact on
running time.

The seed selection parameters are ngrid and pseed. Re-
call that the parameter ngrid determines the resolution for
partitioning the pixels into a grid, and the parameter pseed

determines the percentage of candidate seed pixels that
are processed by HNCcorr. An increase in ngrid results in

a cruder grid and in fewer positive seeds. An increase in
pseed directly increases the number of seeds that are
processed. When the number of seeds is increased, then
more cells may be detected. However, the number of FPs
may increase as well. Also, the running time increases
proportionally to the number of processed seeds.

The parameter  determines the size of the reference
set for (SIM)2. A smaller value of  reduces the size of the
feature vectors Ri, and thus the computational cost. If  is
set too small, then the detection quality of HNCcorr may

Algorithm 2: Seed selection and outer loop for HNCcorr algorithm.
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degrade since the reference set is no longer representa-
tive of the pixels in the patch. A  value of 	25% is
sufficient for most datasets.

The parameter nneg determines the number of negative
seeds that are placed equidistant along the circle with
radius �. This parameter has no impact on the running
time or the detection quality when the circle is large
enough to contain any cell located near the positive seed.

The sparse computation parameters p and � determine
the dimension of the low-dimensional space and the grid
resolution in the low-dimensional space. The grid resolu-
tion � determines the sparsity of the resulting graph.
Higher values result in sparser graphs and lower running
time. It was observed for general machine-learning prob-
lems that an increase in the grid resolution decreases the
running time of the algorithms but has little effect on their
accuracy (Hochbaum and Baumann, 2015). Similarly, the
detection quality of HNCcorr is consistent for a wide
range of grid resolutions, but running time decreases for
larger �. The dimension of p is set to a small value, such
as 3 or 4, to balance computational cost with accuracy:
on the one hand, we like the dimension p as low as
possible to reduce the computation cost for sparse com-
putation. On the other hand, higher values of p explain a
larger fraction of the variance in the data and thus improve
the accuracy of the projection.

The parameter � is the scale parameter for the Gauss-
ian similarity. It has no effect on the running time of
HNCcorr, but it could affect the quality of the similarities
and hence also the detection quality of HNCcorr. If the
segmentations produced by HNCcorr for new datasets
are not satisfactory, then this parameter may need adjust-
ment. It is possible to select a best performing value of �.
This is done by visually comparing the segmentations
produced by HNCcorr against a known set of cell foot-
prints, for different values of �.

Experimental evaluation on the Neurofinder public
benchmark

To evaluate the experimental performance of HNCcorr,
we it compare against other leading algorithms on the
Neurofinder public benchmark. Specifically, we compare
HNCcorr with the matrix factorization algorithms CNMF
(Pnevmatikakis et al., 2016) and Suite2P (Pachitariu et al.,
2016) as well as 3dCNN, a three-dimensional convolu-
tional neuronal network. 3dCNN is an algorithm that only
recently appeared on the Neurofinder benchmark. As of
the time of submission of this article, there was no corre-
sponding publication, nor was there a publicly available
code for the algorithm. We requested the code for 3dCNN
but have not received a response so far. We therefore are
unable to make a comparison with 3dCNN except for the
results posted on Neurofinder.

Datasets
The Neurofinder community benchmark CodeNeuro

(2016) is an initiative of the CodeNeuro collective of neu-
roscientists that encourages software tool development
for neuroscience research. The collective also hosts the
Spikefinder benchmark, which has led to improved algo-
rithms for spike inference in calcium-imaging data (Berens
et al., 2018). The Neurofinder benchmark aims to provide
a collection of datasets with ground truth labels for
benchmarking the performance of cell detection algo-
rithms.

The benchmark consists of 28 motion-corrected
calcium-imaging movies provided by four different labo-
ratories. Datasets are annotated manually or based on
anatomic markers. They differ in recording frequency,
length of the movie, magnification, signal-to-noise ratio,
and in the brain region that was recorded. The datasets
are split into two groups: training datasets and test data-
sets. The 18 training datasets are provided together with

Algorithm 3: Size-based post-processor for the HNCcorr algorithm.
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reference annotations, whereas the reference annotations
for the 9 test datasets are not disclosed. The test datasets
and their undisclosed annotations are used by the Neu-
rofinder benchmark to provide an unbiased evaluation of
the performance of the algorithms. The characteristics of
the test datasets are listed in Table 1. We note that some
cells are not marked in the reference annotation. How-
ever, this does not invalidate the experimental analysis
since the task of annotating cells remains equally difficult
for each algorithm.

All datasets can be downloaded directly from the Neu-
rofinder benchmark for cell identification (CodeNeuro,
2016). The movies were provided to the algorithms with-
out further preprocessing.

Active versus inactive cells
We group the datasets into the following two sub-

groups: datasets in which most annotated cells are active
(i.e., have a detectable fluorescence signal other than
noise); and datasets in which most annotated cells are
inactive. We make this distinction because inactive cells
cannot be found by CNMF, Suite2P, and HNCcorr due to
the lack of measurable changes in fluorescence other
than noise. These cells are detectable with shape-based
detection algorithms [S. Gao, (https://bit.ly/2UG7NEs)],
when the brightness of the cell differs from the back-
ground.

The datasets with inactive cells are as follows: 00.00,
00.01, and 03.00. The presence of inactive cells in these
datasets has been noted in previous work (Pachitariu
et al., 2016) as well as in a discussion (issues 16 and 24)
of reference annotation of the benchmark on GitHub.
Experimentally, we also observed that the percentage of
annotated cells that are active is substantially lower for
training datasets 00.00, 00.01, and 03.00, as shown in
Figure 4. Results for the test datasets could not be eval-
uated due to the lack of a reference annotation, but similar
results are expected.

Evaluation metrics
The list of cells identified by each of the algorithms is

compared with the reference annotation. For this compar-
ison, we use the submissions on the Neurofinder website.
Each algorithm was submitted by the authors of that
algorithm. This ensures that the results are representative
of the performance of the algorithm. Furthermore, the
evaluation is fair since none of the authors had access to
the reference annotation.

The algorithms are scored based on their ability to
reproduce the reference annotation using standard met-
rics from machine learning. Each cell in the reference
annotation is counted as a true positive (TP) if it also
appears in the algorithm’s annotation. The cells in the
reference annotation that are not identified by the algo-
rithm are counted as false negatives (FNs), and the cells
identified by the algorithm that do not appear in the
reference annotation are counted as FPs. The perfor-
mance of each algorithm is scored on a dataset based on
recall � TP / �TP � FN� and precision � TP / �TP �
FP� . The overall performance of the algorithm on a data-
set is summarized by the F1-score, which is the harmonic
mean of recall and precision. For all metrics, higher scores
are better.

A cell in the ground truth annotation is identified if the
center of mass of the closest cell in the annotation of the
algorithm is within 5 pixels. These two cells are then
matched and can no longer be matched to another cell.
Each cell in either annotation is thus matched at most
once.

Statistical analysis
Throughout this article, we apply descriptive analysis

on a set of undisclosed test datasets. We assume for this
analysis that the test datasets are drawn independent,

Table 1: Characteristics of the test datasets of the Neurofinder benchmark and their corresponding training datasets

Name Source Resolution Length Frequency Brain region Annotation method
00.00 Svoboda laboratory 512 � 512 438 s 7.00 Hz vS1 Anatomical markers
00.01 Svoboda laboratory 512 � 512 458 s 7.00 Hz vS1 Anatomical markers
01.00 Hausser laboratory 512 � 512 300 s 7.50 Hz v1 Human labeling
01.01 Hausser laboratory 512 � 512 667 s 7.50 Hz v1 Human labeling
02.00 Svoboda laboratory 512 � 512 1000 s 8.00 Hz vS1 Human labeling
02.01 Svoboda laboratory 512 � 512 1000 s 8.00 Hz vS1 Human labeling
03.00 Losonczy laboratory 498 � 467 300 s 7.50 Hz dHPC CA1 Human labeling
04.00 Harvey laboratory 512 � 512 444 s 6.75 Hz PPC Human labeling
04.01 Harvey laboratory 512 � 512 1000 s 3.00 Hz PPC Human labeling

Data reproduced from Neurofinder (CodeNeuro, 2016).

Figure 4. Approximate percentage of active cells among anno-
tated cells in the training datasets. To determine the activity of
the cells in a movie, we used the following approximate analysis.
First, we downsample the movie by averaging 10 frames. For
every annotated cell, we compute the average intensity over time
of the pixels in the spatial footprint. This time series is used an
estimate of the signal of the cell. A cell is then considered active
if the � f/f (Jia et al., 2011) of this time series is at least 3.5 SDs
above the median of � f/f for a minimum of 3 potentially nonse-
quential time steps. Due to the approximate nature of this anal-
ysis, its interpretation should be limited to understanding the
general ratio between active and inactive cells in the datasets.
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identically distributed (i.i.d.) from the distribution of two-
photon calcium-imaging datasets. The p values are in-
ferred from a lookup table with quantiles for the Wilcoxon
signed rank test.

Code accessibility
The software used to generate the results in this work is

available for noncommercial use at https://github.com/
quic0/HNCcorr.

Computational hardware
The experiments were run with MATLAB 2016a on a

single core of a Linux machine running Linux Mint 18.1.
The machine is equipped with an Intel i7-6700HQ CPU
running at 2.60 GHz and 16GB RAM. The algorithm also
runs on a standard desktop computer or a laptop.

Algorithmic implementations for experimentation
The results in Figures 5 and 8 are taken directly from

Neurofinder (CodeNeuro, 2016) and were produced by
the authors of the respective algorithms. In the remainder,
we describe the HNCcorr implementation used for all
experiments including those reported in Figures 5 and 8.
We also describe the CNMF and Suite2P implementation
used for all experiments except for the results reported in
Figures 5 and 8.

HNCcorr
All datasets for HNCcorr were preprocessed by aver-

aging every ten frames into a single frame to reduce the
noise. All parameters were kept at their default settings
with the exception of dataset specific parameters listed in
Table 2. These parameters are dataset dependent due to
varying cell sizes across datasets. The parameters were

tuned to maximize the F1-score on the associated training
datasets.

For the experiments reported in Figures 5 and 8, we
used non-default values for the reference set sampling
rate ( � 100%) and the grid resolution used for sparse
computation (� � 25). The values differ from the default
since the results of these experiments were uploaded to
the Neurofinder benchmark before we optimized the ac-
curacy/running time trade-off. These changes should
have a marginal effect on the cell detection quality of the
algorithm, but they result in increased running times.

CNMF
The CNMF implementation was obtained from https://

github.com/epnev/ca_source_extraction. The base con-
figuration was taken from the file run_pipeline.m in the
CNMF repository. We turned off the patch-based pro-
cessing, and set the number of cells, as denoted by K,
equal to 600 unless specified otherwise. We used the
same values for the maximum and minimum cell size,
max_size_thr and min_size_thr, as we used in HNCcorr.
We also set the temporal down-sampling tsub to 10 to
match the down-sampling used by the HNCcorr algo-
rithm.

Suite2P
The Suite2P implementation was obtained from https://

github.com/cortex-lab/Suite2P. The base configuration
was taken from the file master_file_example.m in the
Suite2P repository. The diameter parameter was tweaked
per dataset to maximize the F1-score on the Neurofinder
training datasets. The selected values per (dataset) are: 8
(00.00), 10 (00.01), 13 (01.00), 13 (01.01), 11 (02.00), 11
(02.01), 12 (03.00), 11 (04.00), and 12 (04.01).

Table 3: Summary of statistical results

Data Type of test p value
Figure 5 Drawn i.i.d. One-sided signed rank test HNCcorr vs. 3dCNN: p � 0.4,
F1-score (uncorrected for multiple tests) HNCcorr vs. Suite2P: p � 0.2,

HNCcorr vs. CNMF: p � 0.05.
Figure 8 Drawn i.i.d. One-sided signed rank test HNCcorr � Conv2D vs. 3dCNN: p � 0.2,
F1-score (uncorrected for multiple tests) HNCcorr � Conv2D vs. Suite2P � Donuts: p � 0.1.
Figure 9 Drawn i.i.d. One-sided signed rank test HNCcorr vs. Suite2P: p � 0.4,
Solve time (uncorrected for multiple tests) HNCcorr vs. CNMF: p � 0.10.

Table 2: Dataset dependent parameter values used for the HNCcorr implementation. Parameters were selected to maximize
the F1-score on the corresponding neurofinder training datasets

Dataset Patch size Radius circle Size Postprocessor
Negative seeds Superpixel Lower bound Upper bound Expected size

(m) ��� (k) (nmin) (nmax) (navg)
00.00 31 � 31 10 pixels 5 � 5 40 pixels 150 pixels 60 pixels
00.01 31 � 31 10 pixels 5 � 5 40 pixels 150 pixels 65 pixels
01.00 41 � 41 14 pixels 5 � 5 40 pixels 380 pixels 170 pixels
01.01 41 � 41 14 pixels 5 � 5 40 pixels 380 pixels 170 pixels
02.00 31 � 31 10 pixels 1 � 1 40 pixels 200 pixels 80 pixels
02.01 31 � 31 10 pixels 1 � 1 40 pixels 200 pixels 80 pixels
03.00 41 � 41 14 pixels 5 � 5 40 pixels 300 pixels 120 pixels
04.00 31 � 31 10 pixels 3 � 3 50 pixels 190 pixels 90 pixels
04.01 41 � 41 14 pixels 3 � 3 50 pixels 370 pixels 140 pixels
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Results
HNCcorr is a top performer on the Neurofinder
benchmark for cell identification

We provide two comparisons of algorithm performance
on the Neurofinder benchmark datasets. First, we analyze
the performance of HNCcorr, CNMF, Suite2P, and
3dCNN on the Neurofinder test datasets with active cells.
Second, we compare the top Neurofinder submissions
across all test datasets.

Active cell identification
The experimental performance of the algorithms HNCcorr,

3dCNN, CNMF, and Suite2P on the six test datasets contain-
ing active cells is shown in Figure 5 and Table 3. Overall, the
HNCcorr algorithm has superior performance across datasets
compared with the matrix factorization algorithms. The HNC-
corr algorithm achieves 15% (p � 0.05) relative improvement
compared with CNMF in terms of average F1-score across
datasets. It also attains a minor improvement of 4% compared
with Suite2P. However, it performs 3% worse than 3dCNN,

which detects both active and inactive cells unlike HNCcorr,
Suite2P, and CMNF.

HNCcorr performs particularly well on datasets 02.00
and 02.01, where it attains substantially higher F1-scores
than the other algorithms, due to higher detection capa-
bility, as measured by recall. Although 3dCNN is able to
match the near-perfect recall of HNCcorr, it attains lower
precision for datasets 02.00 and 02.01. This indicates that
3dCNN detects cells that either are not in the reference
annotation or incorrectly mark noncell regions as cells.

When HNCcorr, CNMF, and Suite2P are applied to the
annotated, training datasets 01.01 and 02.00, each of the
algorithms was able to uniquely detect some cells. These
cells were not identified by the other algorithms, but were
present in the reference annotation. Figures 6 and 7 show
up to four examples of these cells for each of the algo-
rithms. CNMF uniquely detected only three cells on the
training dataset 01.01 and one cell for the 02.00 training
dataset. HNCcorr thus finds meaningful cells that are not
identified by the other algorithms.

Figure 5. Cell identification scores for the HNCcorr, CNMF, and Suite2P algorithms on the Neurofinder test datasets with active cells.
For each of the listed metrics, higher scores are better. The data are taken from Neurofinder submissions Sourcery by Suite2P,
CNMF_PYTHON by CNMF, 3dCNN by ssz, and submission HNCcorr by HNCcorr.
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Leading Neurofinder submissions
HNCcorr and matrix factorization algorithms identify

cells based on their unique fluorescence signal. As such,
they are able to detect cells that activate (i.e. have one or
more spikes in calcium concentration), but they cannot
detect cells without any signal. As discussed, Neurofinder
datasets 00.00, 00.01, and 03.00 have a large number of
inactive cells. Therefore, matrix factorization algorithms
and HNCcorr detect only a small percentage of cells in
these datasets. The leading Neurofinder submission for
both Suite2P and HNCcorr therefore relies on a shape-
based detection algorithm for these datasets. The HNC-

corr � Conv2d submission uses the Conv2d [S. Gao,
(https://bit.ly/2UG7NEs)] neural network for datasets
00.00, 00.01, and 03.00, and HNCcorr for the remaining
datasets. Similarly, Suite2P � Donuts submission uses
Donuts (Pachitariu et al., 2013) for the datasets 00.00,
00.01, and 03.00, and Suite2P for the remaining datasets.
Together with the 3dCNN, these submissions are the
top three submissions for the Neurofinder benchmark.
Figure 8 and Table 3 shows how the three submissions
compare. In particular, the 3dCNN algorithm outper-
forms the other shape-based detection algorithms on
datasets 00.00, 00.01, and 03.00. As discussed before,

Figure 6. Footprints and �F/F signals for annotated cells in the Neurofinder training dataset 01.01 that were uniquely identified by one
of the algorithms. Segmented footprints and �F/F signal for up to four cells are shown for each of the algorithms. Each cell also
appeared in the reference annotation, but it was not identified by any of the other algorithms. The segmented spatial footprints are
overlaid on the mean intensity image, scaled to show values from the first percentile up to the 99th percentile.
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HNCcorr attains higher F1-scores for the 02.00 and
02.01 datasets.

HNC improves over spectral clustering
HNCcorr uses the clustering model HNC to identify the

spatial footprint of a cell. Alternatively, one could use the
spectral clustering method. To evaluate the impact of
HNC, we tested a variant of HNCcorr where we replaced
HNC with spectral clustering. Similarly, we also evaluated
the effect of the (SIM)2 similarity measure by substituting
the (SIM)2 in HNCcorr with the correlation similarity mea-
sure.

For spectral clustering, we consider the following two
commonly used approaches for postprocessing of the
eigenvector(s): The “threshold” method by Shi and Malik
(2000) and the “k-means” method for k � 2 by Ng et al.
(2002). The threshold method requires as input the num-

ber of pixels in a cluster, which we set to 80 pixels, the
expected cell size used for postprocessing in HNCcorr.
(We apply spectral clustering on a complete graph since
this provides slight improvement in F1-score compared
with the use of sparse computation.)

We compared the approaches on the Neurofinder 02.00
training dataset while retaining the same seed selection
and postprocessing methods as used by HNCcorr. In
Table 4, we provide the performance of the three cluster-
ing methods: HNC, spectral clustering (threshold), and
spectral clustering (k-means). For each clustering me-
thod, we compare the use of correlation similarity to the
use of (SIM)2. As seen in Table 4, HNC has a substantially
higher F1-score than the two spectral clustering methods
irrespective of the similarity measure used. This is primar-
ily due to an increase in the precision score. For each
clustering method, we observe that (SIM)2 provides a slight

Figure 7. Footprints and �F/F signals for annotated cells in the Neurofinder training dataset 02.00 that were uniquely identified
by one of the algorithms. Segmented footprints and �F/F signal for up to four cells are shown for each of the algorithms. Each
cell also appeared in the reference annotation, but it was not identified by any of the other algorithms. The segmented spatial
footprints are overlaid on the mean intensity image, scaled to show values from the first percentile up to the 99th
percentile.
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improvement over the use of correlation as a similarity
measure. The results indicate that the choice of HNC as a
clustering method is primarily responsible for the im-
proved performance of HNCcorr.

HNCcorr is at least as fast as matrix factorization
algorithms

We compared the running time performance of HNC-
corr, CNMF, and Suite2P on nine training datasets of the
Neurofinder benchmark. 3dCNN was excluded since the
underlying code is not available. Running time results are

given in Figure 9 and Table 3. On average, HNCcorr is 1.5
times faster than CNMF. Compared with Suite2P, HNC-
corr performs equally well on average. We observed
similar performance for a large experimental dataset con-
sisting of 50,000 frames not reported here.

The running time of HNCcorr is dominated by the com-
putation of the (SIM2) similarity weights and sparse com-
putation. The running time of the algorithm scales
approximately linearly in the number of edges in the graph
and the number of pixels in the patch. Sparse computation
helps to control the cost of computing the pairwise similar-

Figure 8. Cell identification scores on all test datasets for the three leading submissions of the Neurofinder benchmark in July 2018. For each of
the listed metrics, higher scores are better. The 3dCNN entry is based on the Neurofinder submission 3dCNN by ssz. The Suite2P � Donuts
(Pachitariu et al., 2013) entry is taken from the submission Sourcery by Suite2P. It uses the Donuts algorithm for datasets 00.00, 00.01, and 03.00
and the Suite2P algorithm for the remaining datasets. The HNCcorr � Conv2d entry is taken from the submission HNCcorr � conv2d by HNCcorr.
It uses the Conv2d algorithm [S. Gao, (https://bit.ly/2UG7NEs)] for datasets 00.00, 00.01, and 03.00 and the HNCcorr algorithm for the remaining
datasets. The results obtained with the Conv2d algorithm reported here differ slightly from the Conv2d submission on the Neurofinder benchmark
since the Conv2d model was retrained by the authors of this article.

Table 4: F1, Precision, and recall scores for three different clustering methods on the neurofinder 02.00 training dataset with
the same seed selection and postprocessing methods as HNCcorr

Correlation similarity (SIM)2 similarity
Clustering model F1 Precision Recall F1 Precision Recall
HNC 70.3 65.6 75.6 73.8 72.6 75.1
Spectral clustering (k-means) 46.5 41.9 52.3 49.2 49.2 49.2
Spectral clustering (threshold) 22.4 13.1 77.2 23.7 14.4 66.0

For each clustering method, results are shown with two similarities measures: correlation and (SIM)2.
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ities by controlling the sparsity of the similarity graph G,
which is determined by the grid resolution � in sparse com-
putation. A higher grid resolution results in a sparser graph.

Performance of CNMF strongly depends on the
user-specified number of cells

Currently, the most commonly used algorithm is the
matrix factorization algorithm CNMF. We briefly sketch
the idea behind matrix factorization algorithms. These
algorithms rely on the data-generating process for
calcium-imaging data F � A C � B � i.i.d. noise, where F
is a known matrix containing the recorded data of the
intensity of each pixel over time, matrix A contains the
spatial contribution of each cell to each pixel, matrix C
captures the intensity of each cell over time, and matrix B
contains a time-varying background signal. The problem
is then to infer A, C, and B given the matrix F. In general,
the matrices are inferred by minimizing the objective func-
tion ��F � AC � B��2 � ��A, B, C� subject to non-
negativity constraints, where ��·�� is a matrix norm and
��A, B, C� is a regularization function on the matrices A,
B, and/or C. All matrix factorization algorithms (Mukamel
et al., 2009; Pnevmatikakis and Paninski, 2013; Pnevma-
tikakis et al., 2013a, 2016; Diego-Andilla and Hamprecht,

2014; Maruyama et al., 2014; Pachitariu et al., 2016;
Levin-Schwartz et al., 2017) present variants of this ap-
proach.

The matrix factorization model assumes that the num-
ber of cells (components) is provided in advance. This
parameter is necessary to determine the sizes of matrices
A and C. This number is either user specified or generated
with the use of heuristics. A typical heuristic works by
preselecting the number of components and merging
components with sufficiently similar signals throughout
the algorithm. In particular, the CNMF algorithm requires
an input parameter K that determines the initial number of
components, cells, and then merges components with
sufficiently similar signals heuristically. We observe for
CNMF that the choice of value for the parameter K is
critical to the performance of the CNMF algorithm. This
makes the algorithm difficult to use in practice since one
cannot easily determine the appropriate value for the
number of signal components K.

We ran the CNMF algorithm for different values of K on
nine different training datasets of the Neurofinder bench-
mark. For each of the datasets, we report in Figure 10 the
F1-score obtained by the CNMF algorithm with the num-
ber of cells K set to 100, 300, 600, or 1000. The F1-score

Figure 9. Running time results for nine training datasets of the Neurofinder benchmarks. Running times are based on a single
evaluation.

Figure 10. F1-score for the CNMF algorithm for various values of K on nine training datasets of the Neurofinder benchmark. The
parameter K specifies the number of cells to consider initially for the matrix factorization. The number n, reported in parenthesis, is
the number of cells in the reference annotation of the dataset.
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is obtained by comparing the cells found with the refer-
ence annotation. For most datasets, the F1-score attained
by the algorithm depends strongly on the value of K. For
example, the F1-score for the Neurofinder 02.01 training
dataset is 42% for K � 100, 63% for K � 300, and 46%
for K � 1000. This shows that setting K either too low or
too high can negatively affect performance. This makes
the parameter selection of K a difficult process.

Even knowing the true number of cells is insufficient, as
seen in Figure 10, for, for example, dataset 04.01. This
dataset has 254 cells, but CNMF with K � 300 provides a
lower F1-score than with K � 600. In most cases, it is
preferable to overestimate the number of cells, but by
how much depends on the dataset.

Figure 10 reports for each dataset the F1-score for
various values of K. To provide additional insight into the
effect of the choice of the parameter K, we report also the
precision and recall for the Neurofinder 02.01 training
dataset for various values of K in Figure 11. We conclude
that the change in F1-score results from a trade-off be-
tween recall and precision. When K increases, recall im-
proves but precision decreases.

Note that HNCcorr does not require an estimate of the
total number of cells. Instead, it returns all segmentations
that were accepted in postprocessing. This removes the
need for parameter tuning of the number of cells K and
guarantees consistent results.

Discussion
Local optimization in matrix factorization algorithms
versus global optimization in HNCcorr

Non-negative matrix factorization is a powerful model
for cell detection in calcium imaging. It is used by algo-
rithms such as CNMF and Suite2P. The strength of the
model is its ability to discern the signals of overlapping
cells, which is particularly valuable in calcium-imaging
datasets recorded with one-photon microscopy. How-
ever, the model is difficult to solve since the problem is
nonconvex (Lee and Seung, 2001) and intractable (NP-
hard) (Vavasis, 2009). Hence, the algorithms used for
matrix factorization problems only obtain locally optimal
solutions. These solutions can be arbitrarily bad when
compared with the best possible solution, the global op-
timum. As a consequence, cells may remain undetected
by the algorithm because a poor local optimum was
obtained. However, the user cannot determine whether
this occurred from the output of the algorithm.

In contrast, the HNC optimization model used to seg-
ment cells in HNCcorr is guaranteed to find the best
possible solution for the model. That is, the HNC model is
solved to global optimality. This removes any dependence
on solution techniques, and it uniquely maps the input
graph to the resulting segmentations. This simplifies the
process of diagnosing potential mistakes in the prepro-
cessing, since there is a transparent mapping between
model input and output.

Toward a real-time implementation
The future for calcium imaging in neuroscience is in

real-time data collection, enabling direct feedback exper-
imentation and a myriad of applications. This requires fast
and parallelized cell identification algorithms that work
with streaming data. Parallelization is inherent to the de-
sign of HNCcorr since it considers cells independently.
This enables a direct parallel implementation by consid-
ering multiple cells concurrently. The algorithm also has a
low memory requirement since the HNCcorr algorithm
only uses the data for a small patch of the movie for each
cell.

Beyond two-photon calcium imaging
Although the performance of HNCcorr is demonstrated

here for two-photon calcium imaging, we anticipate that
HNCcorr may well be effective for movies collected with
other calcium-imaging techniques, such as one-photon
and light-field calcium imaging (Prevedel et al., 2014).
Movies collected with one-photon calcium imaging are
characterized by large, blurry background fluctuations
from cells outside the focal plane (Zhou et al., 2018).
Similarly, cells in light-field calcium imaging have blurry
spatial footprints due to an imperfect reconstruction of
the three-dimensional space. These data features re-
quire the algorithm to be able to separate the signals of
overlapping cells. Currently, the HNC model in HNCcorr
does not explicitly capture this objective. Nevertheless,
the (SIM)2 similarity measure should be able to capture
the individual signals of the cells, since the signal of
each cell will be unique to the pixels in its spatial
footprint. The cells in the footprint will thus have a
unique component in their correlation vectors, resulting
in higher similarity between these pixels. Initial experi-
mentation suggests that HNCcorr is able to detect cells
for both types of movies.

Figure 11. Cell identification scores for the CNMF algorithm for various values of K on the Neurofinder 02.01 training dataset. The
parameter K specifies the number of cells to consider initially for the matrix factorization. This dataset has 178 cells in its reference
annotation.
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