An Exact Sublinear Algorithm for the Max-Flow, Vertex Disjoint Paths and
Communication Problems on Random Graphs

Dorit S. Hochbaum

Operations Research, Vol. 40, No. 5 (Sep. - Oct., 1992), 923-935.

Stable URL:
http://links jstor.org/sici?sici=0030-364X%28199209%2F10%2940%3 A5%3C923%3 AAES AFT%3E2.0.CO%3B2-8

Operations Research is currently published by INFORMS.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/informs.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Thu Oct 28 02:25:21 2004

AN EXACT SUBLINEAR ALGORITHM FOR THE MAX-FLOW,
VERTEX DISJOINT PATHS AND COMMUNICATION PROBLEMS
ON RANDOM GRAPHS

DORIT S. HOCHBAUM

University of California, Berkeley, California
(Received January 1989; revisions received August 1990, July 1991; accepted September 1991)

This paper describes a randomized algorithm for solving the maximum-flow maximum-cut problem on connected
random graphs. The algorithm is very fast—it does not look up most vertices in the graph. Another feature of this
algorithm is that it almost surely provides, along with an optimal solution, a proof of optimality of the solution. In
addition, the algorithm’s solution is, by construction, a collection of vertex-disjoint paths which is maximum. Under a
restriction on the graph’s density, an optimal solution to the NP-hard communication problem is provided as well, that
is, finding a maximum collection of vertex-disjoint paths between sender-receiver pairs of terminals. The algorithm lends
itself to a sublogarithmic parallel and distributed implementation. Its effectiveness is demonstrated via extensive empirical

study.

In this paper, we study three problems on undirected
random graphs: the maximum-flow, the maxi-
mum number vertex-disjoint paths, and the commu-
nication problem. Whereas the first and second
problems can be solved in polynomial time, the third
is NP-complete (Lynch 1975). With the algorithms
described in this paper, the first two problems are
equally easy on random graphs—they are solvable in
sublinear time, without looking up all the vertices and
most of the edges. Moreover, along with the solution,
a certificate of optimality is delivered almost surely.
All these features apply to the most difficult of the
three problems—the communication problem, with
the exception of a certain graph density range (or
alternatively, for up to a given number of communi-
cating pairs, depending on the graph’s density).

The maximum-flow and the related minimum-cut
problems have been studied extensively in the litera-
ture of operations research and computer science.
Given a pair of vertices, a source and a sink, the
problem is to push the maximum amount of flow
from the source to the sink, subject to capacity
constraints. on the edges, and conservation of
flow constraints on the vertices. We shall study this
problem with 0-1 edge capacities.

There have been numerous results on improving
the running time of algorithms for the maximum-flow
problem. Given a graph G = (V, E) with | V| = n,

| E | = m, an algorithm by Goldberg and Tarjan (1988)
runs in time O(mn log.(n*/m)) (see the Notes section
for definitions of the O-notations). Improvements
include a randomized algorithm by Cheriyan,
Hagerup and Mehlhorn (1990) with an expected
running time of O(mn + n*(log n)?). This algorithm
has been “derandomized” to a deterministic algo-
rithm by King, Pao and Tarjan (1991) with a reported
running time of O(mn + n**) for any positive e. For
the case of 0-1 capacities, Even and Tarjan (1975)
offer a more efficient algorithm with a running time
of O(min{m?*°n, n**m}).

In certain real-time applications, such as routing
messages, this running time is considered too slow. In
environments where the network structure resembles
a random network, i.e., the availability of each edge
for sending a unit of flow is an i.i.d. random variable,
our algorithm offers a super-fast alternative. More-
over, in routing applications it is particularly desirable
to use algorithms that can be implemented in a dis-
tributed environment. That is, each vertex in the
network can be an independent processor that
“decides” on further routing of the message when only
local information is available, such as the status of the
vertex and its neighbors. The algorithms proposed
here possess natural distributed implementation
because every step uses only local information.

The model of random graphs used here is the

Subject classifications: Analysis of algorithms, computational complexity: sublinear flow algorithms. Communications: communication problem on
random graphs. Networks/graphs, flow algorithms: algorithms for communication and max-flow on random graphs.

Area of review: OPTIMIZATION.

Operations Research
Vol. 40, No. 5, September—October 1992

0030-364X/92/4005-0923 $01.25
© 1992 Operations Research Society of America

924 / HOCHBAUM

common one. A random graph £, , is a graph on n
vertices where an edge exists (or has unit capacity in
our interpretation), with probability p independently
of other edges. Also, p is a function of n denoted by p
= c,/n, where the expected degree of a vertex in &, ,
is ¢,. As ¢, grows larger, the graph becomes denser.

The algorithm here has the feature that in addition
to an optimal solution, it also provides, almost surely,
a certificate of optimality in the form of a minimum
cut. This feature permits the use of the algorithm as a
preprocessor to a maximum-flow algorithm even if
the random structure of the network is not evident. It
can be thought of as a heuristic that frequently pro-
vides an optimal solution and a proof of its optimality.
In the absence of the proof of optimality, one can
always resort to a selected maximum-flow algorithm,
while the penalty in terms of the added running time,
being sublinear, is heavily dominated by the running
time of any maximum-flow algorithm, and thus is
negligible.

Algorithms typically run faster on the average on
random graphs because pathological structures that
bring about the worst-case running time are avoided
with high probability. The maximum-flow problem
has been studied on random graphs: Grimmet and
Welsch (1978) showed that for a complete undirected
graph, where the capacities are i.i.d. random variables
with finite mean u, the maximum flow is asymptoti-
cally equal almost surely to nu. This result is also a
by-product of the analysis of our algorithm for the
0-1 capacities. Karp, Motwani and Nisan (1987) and
Hassin and Zemel (1988) consider dense capacitated
graphs, 0 < p < 1, and identify a linear time algorithm
O(m) for producing, with probability going to 1, a
maximum flow on such graphs. For this range of
densities, p constant, our algorithm runs in O(n) time,
which is sublinear in m. Motwani (1990) took the
approach of studying the length of an augmenting
path in a random graph. He shows that the length of
such paths is bounded in random graphs. Conse-
quently, all augmenting path algorithms have a faster
running time on random graphs. This running time
O(m log n/log np) is more than quadratic in the
running time of our algorithm. Motwani makes the
point that his proof shows that the average case behav-
ior of the algorithms used for maximum flow is very
efficient. Here we show that algorithms constructed to
take advantage of the structure of random graphs can
do substantially better.

On networks with 0-1 capacities, finding the maxi-
mum flow is equivalent to finding the maximum
number of edge-disjoint paths. By the construction of

our algorithm, it will not only provide a solution along
edge-disjoint paths, but these paths will also be vertex-
disjoint. Therefore, it will find in sublinear time,
almost surely, the maximum number of vertex-
disjoint paths between the source and the sink,
along with a certificate of optimality (the number of
vertex-disjoint paths cannot exceed the number of
edge-disjoint paths).

In summary, compared to other algorithms devised
in the literature, the analysis here holds for the full
range of densities, the running time of the algorithm
is faster, and the flow it produces is along vertex-
disjoint paths. This latter feature allows the algorithm
to be used for solving two problems other than
the maximum-flow problem, at the same running
time.

The communication problem is to find a maximum
collection of vertex-disjoint paths between specified
sender-receiver pairs. Although this is more difficult
than the maximum vertex-disjoint paths problem, it
is also solvable by our algorithm on random networks
except that this solution is limited to a certain range
of graph densities. Formally, to find paths between
¢-specified pairs of nodes, the requirement is that ¢
not exceed Yisvnc,/log, n, where the random graph
i8S %, .

Our results apply to connected random graphs, i.e.,
those with an expected degree of at least log, n + w,,
where w, is any function of » going asymptotically to
infinity. The condition on the expected degree is nec-
essary to assure connectedness with probability going
to 1 (Erdos and Rényi 1960).

In addition to the algorithmic results, we also derive
certain theoretical results concerning the properties of
random graphs:

1. The minimum cut is almost surely a partition of
the vertices into two sets, one of which is the source
(sink) and the other is the remainder of the graph.
Whether it is the source or the sink that is separated
by the minimum cut from the rest of the graph is
determined by which of the two is of lower degree.
For dense graphs, this result has also been observed
in Grimmet and Welsch (1978), Karp (1979),
Karp, Motwani and Nisan (1987), and Hassin and
Zemel (1988). The significance of this observation
is that it makes a certificate of optimality in the
form of a minimum cut readily available.

2. There exists a maximum flow along vertex-disjoint
paths almost surely.

3. For ¢, = +vnlog. n, the flow is along (vertex-
disjoint) paths of length 3 or less. A similar result

has been established by Hassin and Zemel for
capacitated dense random graphs.

The first property has been generalized to the mini-
mum k-cut problem, which is a generalization of the
minimum cut problem. Goldschmidt and Hochbaum
(1990a) prove that a partition of a random graph into
k components with the minimum number of edges
between components is achieved when k — 1 of the
components consists of single vertices, and the kth
one is the remainder of the graph.

The bidirectional tree search is the technique at the
heart of all the procedures we use. The bidirectional
tree search begins with two sets of vertices, the neigh-
bors of the source s, N(s), and the neighbors of the
sink ¢, N(¢). The search process attempts to create ¢ =
minf{| N(s)|, |N(t)|} vertex-disjoint linking paths
between these two sets. Assume without loss of gen-
erality that | N(s) | = | N(¢) | = ¢, otherwise the excess
number of vertices can be deleted without affecting
the algorithms or their analysis. We denote the vertices
in these two sets by N(s) = {s\, ..., sz} and N(¢t) =
{t1, ..., L}

We distinguish between the so-called sequential and
parallel implementations of the search. These are
italicized to emphasize the difference between them
and the concepts of sequential algorithms running on
a single processor versus parallel algorithms running
on multiple parallel processors. The implementation
of both the sequential and parallel will require a single
processor. Whereas the sequential procedure searches
for one path at a time between a specific pair of
vertices, the parallel procedure searches in “parallel”
for any possible path connection between all neighbors
of the source and all neighbors of the sink.

In the sequential implementation, two breadth-first-
like trees are grown, one from each of the pair of
vertices to be linked. This is done by alternately adding
a layer of leaves to each tree. The leaves added are the
set of all neighbors unvisited so far of the previous
layer of leaves. Once a neighbor of a leaf of one tree
is in the other tree the trees “meet” and a path has
been created. For denser graphs this is slightly modi-
fied by adding only a subset of the neighbors of the
leaves. (The full details of the sequential procedure
are given in Section 5). The parallel version simulta-
neously grows several trees, rooted at all the neighbors
of the source and the sink. It works iteratively and at
each iteration it adds a single layer of leaves to all
trees. When a node in one of the trees on the source
side has a neighbor on the sink side (or vice versa), a
path is created between the respective roots of these

Algorithm for Max-Flow Problems | 925

two trees. As a result, the parallel version of the
algorithm does not assure the pairing of specific ver-
tices in contrast to the sequential procedure. When-
ever a path is identified, the vertices in the two trees,
rooted at the vertices now joined with this path, are
all deleted from the graph.

The critical part of the analysis is to show that not
too many vertices get deleted in the process of creating
the trees (once added to a tree each vertex is no longer
considered for any other tree or path). The parallel
version tends to eliminate fewer vertices than
the sequential, hence it is the implementation of
choice for solving the maximum-flow and the vertex-
disjoint paths problems. We demonstrate the circum-
stances under which the sequential and the parallel
approaches are effective. We also analyze the number
of neighbors selected for each leaf, which is not nec-
essarily all neighbors like in a breadth-first-search
procedure, and study the properties of two such search
strategies.

In case it is desirable to produce short paths, we use
Goldschmidt and Hochbaum’s (1990b) greedy match-
ing algorithm to derive such paths when ¢, =
avn log, n, for some specific constant «, in time
which is sublinear in the number of vertices. The
running time of the greedy matching is linear in the
number of vertices when ¢, = @(n), and there are 0(n)
pairs to match; hence, this running time is the fastest
possible. The O(#) running time is still sublinear in
the input size which is dominated by the expected
number of edges, Y2 pn?.

Finally, we present a range of empirical results. In
less than ten minutes we can solve to optimality, on
an IBM/PC, problems on networks of 30,000 vertices.
Frequently, asymptotic theoretical results only hold
in implementations for astoundingly large graphs. For
our algorithm, its high speed and performance, as
indicated by finding and verifying an optimal solution
within a few seconds, is already realizable for graphs
with as few as 1,000 vertices.

We conclude that for any network problem with
the appropriate random structure, our algorithm is
simple, practical and very fast. It also lends itself easily
to the distributed or parallel implementations in an
environment of multiple processors that run faster
than ©(log 7).

The plan of the paper is as follows. The parallel
procedure is described in the next section, followed by
a probabilistic analysis of this procedure in Section 2.
Section 3 describes the use of the greedy matching
algorithm for dense graphs. Section 4 summarizes
the recommended use of the parallel and matching

926 / HoCHBAUM

algorithms, and comments on the issue of identifying
the graph density required to determine which proce-
dure to run. Section 5 describes the sequential algo-
rithm, and Section 6, its probabilistic analysis.
Section 7 studies the application of the algorithms
for the communication and the maximum vertex-
disjoint paths problems. Here the problems are given
as two sets of vertices in a random graph that
have to be linked via vertex-disjoint paths. It is
proved that the size of such sets is unrestricted for
the vertex-disjoint paths problem, and is restricted to
ievn/log. n V¢, vertices for the communication
problem. In Section 8, we assume the existence of
multiple processors and describe how to implement
the algorithms in a distributed or a parallel processing
environment, The distributed version runs in sublo-
garithmic time. Section 9 describes the empirical
results that indicate that the theoretical results in the
preceding sections are indeed realizable in practice.

Extra care has been taken to derive almost sure
probability expressions, as opposed to results with
probability going to 1. We shall say that a property %
holds for random graphs almost surely, if the proba-
bility P, that the property & holds for a graph &, ,
satisfies that ¥;;—, (1 — P,) is finite. To have a property
hold almost surely it suffices to have P,> 1 — 1/(n'*’)
for some § > 0.

1. THE PARALLEL BIDIRECTIONAL TREE
SEARCH

The bidirectional tree search is a procedure for iden-
tifying paths between N(s) and N(¢). There may also
exist other paths between s and t. Therefore, we first
apply a preprocessing phase for removing these other
paths that are of length 1 or 2 between s and ¢. This
is done by recording the existence of an edge (s, ¢), or
edges of the type (s;, t) and (s, ¢;) for all 5, € N(s) and
t; € N(t). These paths and all vertices in the paths are
deleted, and their count is eventually added to the
maximum flow or to the maximum number of vertex-
disjoint paths identified by the parallel search proce-
dure. The sets N(s) and N(z) are also searched for
vertices of degree zero, that is, vertices with no neigh-
bors in V — {s, t} — N(s) — N(¢). Such vertices
are eliminated and the value of ¢ is determined
subsequently.

We assume that the random graph’s realization G
is given by an adjacency matrix and an adjacency list.
We maintain two arrays root, and pred,, of length n
each, and an array of length 2¢. These arrays contain
labels and are initially empty. The array root,, con-
tains in the ith position once vertex i/ is reached, the

name s, or ¢, of the root of the tree to which vertex i
belongs. The second array pred,, contains in the ith
position for any vertex i/ reached, the index of its
immediate predecessor in the tree. The third array
delete,, has a flag in the s; position or the ¢; position
if the tree rooted at that vertex has been deleted,
otherwise the entry is empty.

The process of “growing” trees in the parallel pro-
cedure amounts to finding two neighbors for each of
the leaves of the ¢ trees rooted at {s,, ..., s}, and
then finding two neighbors for each of the leaves of
the ¢ trees rooted at {7y, . . . , #;}. An identified neighbor
of v, u is labeled with the name of the root of the tree
root,. It also gets the label pred, = v to enable the
recovery of the path. This process doubles the number
of leaves with each addition of a layer. The doubling
procedure may not always work because some leaves
may not have two neighbors, but rather one or none.
The double procedure reports failure whenever it finds
two vertices considered consecutively, with zero or
one neighbor each in the remaining graph. This is
implemented as follows: If a vertex has only one
neighbor v, then we look for two neighbors of v from
the remaining graph, and consider those two vertices
as the leaves in the new layer; if a vertex has no
neighbors, then we search for two additional neighbors
of its predecessor, and consider those as leaves in the
new layer. It is proved (Lemma 1) that failure does
not occur almost surely.

When the total number of leaves on the s-side and
on the -side exceeds 4 vn log, n, the linking phase
takes place. At this point, there exist edges between
the leaves of half of the trees at least, almost surely
(this is proved in Theorem 2). The procedure for
identifying the edges linking half pairs of the trees has
two variants that depend on the density of the graph
(the details are described later). Given a procedure for
identifying those edges, the linking phase is accom-
plished by alternately linking half of the trees, deleting
the linked trees, and then doubling the number of
leaves in the remaining trees. As a result, the number
of leaves at the beginning of each iteration, in which
half of the trees are linked, is fixed. At most, log,[¢1
such stages are performed to find a maximum flow
and a maximum number of vertex-disjoint paths.

The method of identifying the links between half of
the trees on the s-side and half of the trees on the -
side depends on the graph density: If the graph is
sparse, c, is O(vn log n), and the linking is performed
by inspecting all neighbors of one leaf of a tree at a
time. If, on the other hand, the graph is dense, ¢, is
Q(vn log n), then all edge slots between one selected
leaf of a tree and all the leaves of the opposite side are

inspected. This means that for each specific pair of
vertices, we check whether there is an edge with these
endpoints. This is done by looking up the appropriate
entry in the vertex-vertex adjacency matrix.

The matching algorithm on random bipartite graphs
is proposed as an alternative /inking algorithm. For
p = +log n/n) (more precisely for avlog, n/n <
p < 1, for some « > 0), we use the matching algo-
rithm to link directly, via paths of length one, the
sets N(s) and N(¢), without applying the doubling
phase first.

For the parallel search, a failure is reported when
the doubling has failed or when there are still unlinked
trees on both the s and ¢ sides, but no more undeleted
neighbors.

The parallel procedure is applicable to the full
range of p where the graph ¥, , is connected, i.e., for
(log. n + w,)/n < p < 1, with any function w, such that
lim,_. w, = o,

2.- PROBABILISTIC ANALYSIS OF THE
PARALLEL ALGORITHM

All the theorems and lemmas are stated in terms of #,
the initial number of vertices in the random graph.
We utilize the validity of these theorems to establish
results for the remaining graph that contains less than
n vertices. This is justified since in Corollary 3 we
prove that there are at least @(n) vertices remaining at
any iteration. Hence, all the results hold asymptoti-
cally as claimed.

Lemma 1. The doubling procedure can be accom-
plished almost surely.

Proof. The doubling procedure fails when two given
vertices are of a degree less than two.
Pr[a given vertex has 0 or 1 neighbors]
<s(I=p"+ (= pl - p)?
= (1 = p)"(1 + pn).

For p constant, 0 < p < 1, this probability is exponen-
tially diminishing to zero. For p — 0,

(1=p)" (1 +pn)<2(1 = p)'pn

"'7/4}1 —(‘IN
=2cn[<1—ﬁ>] <2&
n e

So, for ¢, = 2 log, n, none of the leaves will have
less than two neighbors almost surely. For ¢, =
log. n + w,, with any w, such that lim,_, w, = ©
(the lower limit on ¢,), given two vertices, at least one

Algorithm for Max-Flow Problems | 927

of them has two neighbors or more almost surely. As
a result, the doubling process can be accomplished
successfully almost surely.

Theorem 1. If the linking phase of the parallel proce-
dure starts when each side has at least 4n log, n
leaves, then it is completed successfully almost surely.

Proof. The value of L is selected in such a way that it
is possible to link almost surely one half of the re-
maining tree pairs at each iteration. One iteration of
the /inking procedure will consist of either inspecting
the edge slots in the bipartition induced by the s-leaves
and the t-leaves or the neighbors of certain nodes
depending on the graph’s density.

Suppose that at a given iteration there are i trees to
be connected on each side, or i is the minimum of the
number of trees in each side. Due to the construction
in which the number of leaves of each tree is doubled
at each iteration, all trees have precisely the same
number of leaves L/i. The probability that a vertex
will have no neighbor on the opposite side is (1 — p)~-.
The probability that all leaves of one tree will have no
link to the opposite side is (1 — p))*“”. Hence,

1

P(i)= Pr[[EJ subtrees get linked}

=[1= (1 =PI/ = (1 = p)*/0 =1
.. [1 _ (1 _p)L/i(l~I'1'/21~l//)L]
> [1 _ (1 __p)l?/zi]i/z'

The probability of success in all [log, ¢1 iterations is
then for ¢ = min{| N(s) |, | N(?) |}:

Llogycd C‘.

= "p)l‘z/lc"]{'/z@
S ees [1 _(1 —p)I,Z]

>1- (1 _p)l.z/zc'-]c'-logf'/z.

We now determine the least size of L, the number
of leaves, that guarantees that the /inking algorithm is
completely successfully almost surely; i.e., there exists
some 6 > 0 such that,

1

n(l+1§) :

[1 — (1 _ p)/.z/zilz-]ogzé/z >1 -

Since

—1/n1+# 1

e =1 - _—n“””

928 / HocHBAUM

it suffices to have

[1 _ (1 _ p)LZ/zZ-]Elong/z > €_]/n“+é).
Letting 6 = 1, we have

1 — e——2/n2['log2(' > (1 _ p)LZ/ZE.

It is easy to see that if x > 0 and x is sufficiently small,
then 1 — e™¥ > Xx/2, so again it suffices to have

1 252
—— = (1 = p¥7*or,
nc log, ¢ (p)

1 L?
log| —=———) = — log/1 — p).
08 (nzc log, c> 2¢ ogdl = p)

For 0 < p < ', due to the concavity of the function
log(1 - p),
log.(1 — p) = 2p log, '-.

(Note that both sides of the inequality are negative).
Hence,

L?p

L 1o L <10 (—l—)
¢ OBp S 08 nc log, ¢/’

and L satisfying

- -
> \ /logdn°¢logc)c
log, 2 D

will allow completion of the linking successfully al-
most surely. Since ¢ < n and ¢ < 2pn almost surely, a
choice of L = 3+vn log. n will generate the successful
completion as required. For 2 < p < 1, we should
have,

1> 2¢log1/(n°Clog, ¢)) 2¢log/n°clog)
~ logd1-p) log(1/1 = p)

But the last term is less than or equal to,

2¢log{n*clog,)

log, 2 <4n lOgL,(n 31082 n)<4n]0&»)’14.

Hence, for all p it suffices to choose L = 4+/n log, n.

Corollary 1. The total number of vertices checked by
the parallel algorithm is O(¥n log n(log c,)).

Proof. The algorithm checks vertices either during
the phase of “doubling” until there are at least L leaves
on each side, or subsequently, after half of the trees
get linked. In the former phase, the total number of
vertices in the trees is O(L) because these are essen-
tially binary trees. In the latter phase, the number of
vertices in the remaining trees is doubled log; ¢, times.
In each such layer we check O(L) vertices. Hence, the
total number of vertices checked is O(L log, ¢,).

This corollary justifies the implicit assumption that at
any iteration at least ©(») vertices remain in the ran-
dom graph.

The linking procedure may be applied, depending
on the density of the graph, by either checking all
neighbors of each leaf until a link is found, or alter-
natively checking the edge slots in the bipartition
induced by the two sets of leaves until a link is found.
In the following lemma, it is proved that checking all
edge slots is preferred if ¢, is large and checking
all neighbors, if ¢, is small.

Lemma 2. Given two sets of L leaves in %,,, the
expected number of steps required to find a link is:

a. O(n/L) when checking all neighbors of one vertex
at a time until a link is found; or

b. O(n/c,) when checking all edge slots in the
bipartition.

For L = O(vn log n), checking all edge slots is at
least as fast as checking all neighbors when c, is
U+ log n).

Proof. a. All vertices in the graph are equally likely
on the adjacency list of the L vertices considered, i.e.,
neighbors of the set of L leaves. The probability of a
given node on the opposite side to be among the
neighbors is thus L/n. Therefore, O(n/L) of the neigh-
bors are to be looked up before a link is found.

b. Since the probability that an edge occupies an
edge slot in the graph is p, the expected number of
checkings until an edge is found is at most 1/p. Hence,
it takes O(n/c,) steps almost surely.

To find the break-even point between inspecting all
neighbors and all edge slots, we compare the expected
values of both search methods. Checking the neigh-
bors is more efficient when n/L = O(n/c,). This holds
for ¢, = O(L), or equivalently, ¢, = O+ log n), thus
completing the proof.

Corollary 2. The total expected number of steps
required by the parallel procedure is

O(Vn log n log ¢,) + O(n)
for ¢, = O(¥n'log n)
O(n log n log ¢,) + O(n/(log n) ¢,)
for ¢, = (/n log n)
which is O(n) for all c,.

Proof. The work of the algorithm is in the “doubling”
and “linking” phases. If ¢, = O(v¥nlog n), by
Lemma 2, it takes ©((n/L)c) for the linking of all

¢ trees. Now, (n/L)¢ = O((n/L)c,), and

n<n log n>
Cp = 0(———'——— = O(n).
vnlogn

The number of steps taken for doubling is
O(L + L log c¢,), since the number of vertices
checked for doubling is O(L) during the “growing”
phase and O(L log c¢,) during the “linking” phase.
Hence, the entire doubling phase takes O(L log c,),
which is O(+vn log n log c,). This is dominated by
O(n). Thus the total number of steps is O(n).

For ¢, = Q(vn log n), the doubling’s running time
remains the same, and for the linking the stated run-
ning time follows from Lemma 2.

n
L

3. MATCHING

The simplest way to link N(s) and N(¢) is by
pairing them up directly. This amounts to finding a
bipartite matching the bipartite graph induced by
N(s) and N(¢). Erdos and Rényi proved that for
p = (log. n + w,)/n, where lim,_. w, = o, almost all
random graphs %, , have a perfect matching. Such
perfect matching exists with probability e="". The
same applies 10 F,,,, the random bipartite graph
with n vertices on each side such that an edge exists
with probability p. In our case, we seek a perfect
matching in a bipartite graph on 2¢ vertices F:z ,,
hence, p has to satisfy p = (log. ¢ + w,)/¢ in order to
have a perfect matching between N(s) and N(z). Since
¢ is O(np) in the random graph &, , almost surely, it
is sufficient to have p = ¢,/n satisfying

> 2 log.c, ‘
Cn

Any ¢, = 2+vn log, n satisfies that inequality. Thus,
the bipartite graph B(N(s), N(¢), E) is a random
bipartite graph %;; , that contains a perfect matching
almost surely.

In a random bipartite graph %#,,, with p =
(o log, n)/n, for some constant o > 2, the greedy
matching algorithm applies (Goldschmidt and
Hochbaum 1990b) with an expected running time of
O(n + nlog 1/p). That greedy matching algorithm has
the same underlying idea as the linking procedure.
That is, each node is linked with the first available
neighbor found. The failures are then matched to-
gether with a set of uninspected vertices, that we set
aside for that purpose, using Angluin and Valiant’s
(1979) algorithm. Applying it to the bipartite graph
Pz p, With ¢ = avn log, n, the expected running time

Algorithm for Max-Flow Problems | 929

of the greedy matching algorithm is
O(¢ + ¢ log/1/p)),

which is O(np + np log.1/p). Since 0 < p < 1, we can
write

1 log.(1/p)
np log, — = n ———=,
P g"p (1/p)
where
lim,_.. 8D _ o e o

1/p

and is a constant when p is a constant. The running
time of the mtching is o(n) for p = o(1), and O(n) for
p=0(1).

4. SUMMARY OF THE ALGORITHM FOR THE
MAXIMUM-FLOW PROBLEM

The most efficient implementation of the algorithm
to solve the maximum-flow problem uses the parallel
algorithm up to the range of densities where the
matching works. At that range, it is more efficient to
use the greedy matching algorithm. For

o(n) > ¢, > avn log, n

for some « > 0 the matching algorithm runs in o(n)
time, and hence is faster than the parallel procedure.
The recommendation is to run the parallel proce-
dure for ¢, < avnlog n, and the matching for
¢, = avn log, n. The running time of this combined
procedure follows from Corollary 2 and the running
time of the matching stated in the previous section,

0(\ / —n—c,,> forlog.n+w,<c,<avnlogn
logn

0<c,,<1 + logf—)) for avnlog.n<c,<n.

This running time is o(n) except for the functional
values of ¢, ¢, = @(\/n log n) or ¢, = ©(n), where it
is O(n).

In principle, the density of the random graph is not
given along with a realization of the graph. There are
several ways to circumvent this difficulty. One is to
use only the parallel procedure for any graph realiza-
tion. The running time is less than ©(c,n)—the ex-
pected number of edges and input length—and hence,
is still sublinear. Note that the parallel procedure
includes the linking that depends on the density as
well. Here we can alternate between a single operation
of checking all neighbors and a single step of checking
all edge slots, and terminate with the first one to

930 / HocHBAUM

succeed. This will at most double the running time. If
we want the running time not to exceed O(n), we can
use the same idea for the parallel and matching algo-
rithms—alternately running one step of each algo-
rithm appropriate for a different density range and
terminate with the first one to succeed. A third ap-
proach is to sample the degree of a few vertices to
guess the density of the graph.

Both algorithms leave most of the nodes in
V — {N(s) U N(¢)} uninspected.

5. THE SEQUENTIAL ALGORITHM

The sequential algorithm is used to solve the com-
munication problem. Although this algorithm could
also be used to solve the maximum-flow problem, it
is less efficient and inspects more vertices than the
parallel algorithm.

For the communication problem a set of ¢ terminals
to be paired is given, (si, 1), ..., (sz ;). To find
vertex-disjoint paths connecting each pair (s;, ¢;), we
grow a tree from each vertex by recursively finding all
neighbors of each of the leaves and alternating from
the s-side to the z-side. More precisely, consider a pair
of vertices s’, ¢/, one in N(s) and one in N(¢). The
algorithm searches to construct a path between s’ and
t’. These two vertices are initialized to be two single-
ton sets of the s-leaves and the t-leaves, respectively.
The search now alternates between the s-side and the
t-side. It finds all neighbors of the current leaves,
inspecting them one at a time, in a random order, and
labeling them s’ or ¢’, depending on whether they
were reached from the s- or z-side. All these neighbors
become the new set of leaves. The search now adds a
new layer to the tree on the opposite side using the
same procedure. The search alternates until one of the
identified neighbors of a leaf on one side belongs to
the tree created on the opposite side. If a neighbor of
a vertex on the s-side is also on the s-side, then this
link is ignored.

Once the number of leaves on each side exceeds
V(2 + 8)n log, n)/c, for any 6 > 0, it is guaranteed
almost surely that the two sets of leaves are directly
linked (see Lemma 3). At this point, the /inking algo-
rithm is introduced. For ¢, = O@n log n), the linking
works by continuing the same procedure, i.e., check-
ing all neighbors until one neighbor on the opposite
side is identified. For larger values of c¢,, ¢, =
Q@n log n), the linking procedure checks the edge
slots in the bipartite graph induced by the two sets of
leaves.

In case there are no more neighbors to create the
next layer, the procedure terminates and reports a

failure. Otherwise, a path is eventually identified be-
tween the selected pair of vertices. All the vertices in
the two trees rooted at s’ and ¢ are then deleted from
the graph. The process is repeated for another pair of
vertices until either N(z) and N(s) have been ex-
hausted or a failure has occurred.

6. PROBABILISTIC ANALYSIS OF THE
SEQUENTIAL ALGORITHM

At each iteration of the sequential algorithm, we have
two trees and two sets of leaves. We study the number
of leaves L required on each side sufficient to have
both trees linked, almost surely.

Lemma 3

a. When two disjoint sets of nodes in a random graph
@, have at least N((1 + 8)n log, n)/c, nodes each, for
some &6 > 0, there is a link between the two sets, almost
surely.

b. For up to ¢ pairs of the sets of L nodes each to be
linked almost surely it suffices that L >
V(2 + §)n log. n)/c,.

Proof

a. Pr[two sets of leaves of size L each are not
connected] = (1 — ¢,/n)~.

For c¢,/n — 0, this probability goes asymptotically
to e @Y To have e " going to zero at
least as fast as 1/n'*® for some 6 > 0 (so that
almost sure convergence is guaranteed), we have
e~ @M < p=0+) That implies that L >
V(1 + 6)n log, n)/c,. When ¢,/n -5 0, it is a constant
between zero and one, and then L > v2/p log. n
suffices. Note, however, that this case will not be in
the range of the sequential algorithm, so it is of no
interest as far as the properties of this algorithm are
concerned.

b. Pr[at least one of the pairs of ¢ sets is not linked]
< » Prfset i is not linked]
i=1

=¢(l — c./n)"

< fel~/ML? < nel—e/mL? < p(1+)

Since the expected value of ¢ = minf{| N(s)],
| N(¢) |} is less than or equal to c,, it is O(c,) almost
surely. The total number of vertices in each tree with
L leaves is no more than 2L (at each layer the number
is expected to go up by a factor of ¢, compared to the
previous layer). Hence, the total number of vertices
examined and deleted in the process of establishing

the ¢ paths is

0<c,, \ / n_l_gg_g) = O(Vc¢un log n)

almost surely. Lemma 4 follows from these
arguments.

Lemma 4. For ¢, = O(n/log n), the total number of
vertices used by the sequential procedure is o(n) almost
surely. If ¢, < n/(2Q2 + 68)log. n) for some constant
6 > 0, no more than n/2 vertices are used.

This lemma justifies the assumption that the number
of deleted vertices throughout the procedure is a
diminishing fraction of #, or that at least Y2n vertices
remain at the termination of the algorithm. The latter
fact is sufficient for our purposes because all the proofs
assume the availability of @(#n) undeleted vertices in
the graph.

In the next lemma we compare the alternative
methods for linking a pair of trees.

Lemma 5. Given two sets of L leaves in %,,, the
expected number of steps required to find a link is:

a. O(n/L) when checking all neighbors of one vertex
at a time until a link is found; or

b. O(n/c,) when checking all edge slots in the
bipartition.

For L = V((2 + 6)n log. n)/c, for some 6 > 0, check-
ing all edge slots is at least as fast as checking all neigh-
bors for ¢, = QR*/n log n), ie., if ¢, = O¥n log n)
checking all neighbors is preferred, which takes
O(n*?/(log n)'"?).

Proof. The proofs of parts a and b are identical to the
respective proofs in Lemma 2. To find the break-even
point between inspecting all neighbors and all edge
slots, we compare the expected time required for
the success of both search methods. Checking all
neighbors is more efficient when n/L = O(n/c,).
This holds for ¢, = O(L), or equivalently, ¢} =
O((2 + &n log n). So, for ¢, = OF/n log n), this
method is indeed preferred with running time

ny _ Hca \ _ n(n log n)'3
0<Z>—0< V logn>—0< V. logn >

n2/3
= 0<(log n>'“>‘

Similarly, for the range where n/c, is the smaller
value, a simple calculation shows that the number of
checks is O(n*?/(log n)'’3).

Algorithm for Max-Flow Problems | 931

Since the number of vertices remaining in the graph
is ©(n), when ¢, < n/(2(2 + 6)log, n) (Lemma 4), this
is also the range of densities assumed in the following
corollary.

Corollary 3. An edge that connects the two sets of at
least L = (2 + 6)n log. n/)c, leaves each can be
Jound in the expected number of steps, O((n log n)*>.

The total running time of the sequential algorithm
derives from the phase in which the necessary number
of leaves is identified, followed by the work required
to link the two sets of leaves. As proved in Lemma 4,
the bidirectional search takes O(~/nc, log, n) steps for
generating the leaves. The linking phase takes
O(vVnc3/log n) steps for ¢, = OFn log n) and O(n)
for ¢, = Q@n log n). Since the running time is o(n)
for the range

log.n+w,<c,=0 1
ge n =< Ln logn’

the dominating complexity is that of the linking phase.

Corollary 4. The expected running time of the sequen-
tial procedure is

3
0(\/gjj) JSorlog.n+w,<c,=0¥nlogn)

| om) for@(nlogn)=c,= o<i> .

logn

Note that the complexity of the sequential proce-
dure is sublinear in the length of the input, since it is
at most linear in the number of nodes #, but the
expected number of edges that determines the input
length is ®(n?p), which is Q(#n log 7). Also note that
the total number of steps is almost surely bounded by
the value specified in Corollary 4, multiplied by a
factor of log.n.

The expected length of the paths found in the
sequential procedure are easy to compute. Whenever
all neighbors are found, the number of leaves is ex-
pected to grow by a factor of O(c,). The length of the
path from each side until linkage is therefore expected
to be log., L, so the expected length of each such path
is

2 log,, \/Q2+ 6)cn log. n’

which is O(log).

932 / HOCHBAUM

7. THE FEASIBILITY OF THE COMMUNICATION
AND THE VERTEX-DISJOINT PATHS
PROBLEMS

Both the communication and the vertex-disjoint paths
problems may be presented independently of the
maximum-flow problem. That is, rather than finding
paths between two sets of vertices, one which is the
neighbor of a source vertex, and the other of a sink
vertex, the problem is posed for two arbitrary sets of
vertices. This is a generalization, since in the context
of maximum flow, the two sets to be linked are not of
arbitrary size, but rather of random size with an
expected value of O(c,). Given two arbitrary sets of
vertices in a random graph, we investigate how large
they can be while the algorithms still succeed in pro-
viding a solution, i.e., a collection of vertex-disjoint
paths between the two sets. Here the certificate of
optimality is simply the description of the vertex-
disjoint paths between all pairs in the two sets.

For the communication problem we are given two
sets S, T of vertices in a random graph and a specified
pairing (sy, t,), ..., (5., ¢,). The question is how large
r can be so that the sequential algorithm solves the
problem and links all pairs via vertex-disjoint paths
almost surely. A failure occurs if the algorithm runs
out of vertices in the process of a bidirectional tree
search. For each pair to be linked, we need 2L vertices
on each side with L < v((2 + 8)n log. n)/c, (Lemma
3). For all r pairs to be linked, we need 2r - 2L < Yan,
so there are always at least 2z vertices which remain.
Hence, the largest value of r is determined as a
function of ¢,:

re 4 " e

16 log. n
Since ¢, > log, n, r can be set to be O(\/Z) regardless
of what ¢, is, and can go up to O(n/vlog n) pairs on
dense graphs. Hence, the communication problem can
be solved almost surely for sets of size O(«/Z), and for
larger sets on denser graphs.

For the vertex-disjoint paths problem, we are given
two sets of r vertices each in a random graph. The
question is how many vertex-disjoint paths can be
found between them. Here the parallel procedure is
used. In the parallel procedure, log, r stages are needed
to link 7 pairs along vertex-disjoint paths. Each stage
requires 2+vn log, n leaves. The total number of ver-
tices used is no more than

2 . 2vn log, n(1 + log,).

For this number not to exceed Y2n it is sufficient for »
to be less than 2278 _Since the 2r vertices are part

of the graph, their number may not exceed n. Hence,
it is possible to link any number of pairs along vertex-
disjoint paths in a connected random graph.

8. PARALLEL AND DISTRIBUTED
IMPLEMENTATIONS

Both the sequential and matching algorithms lend
themselves readily to a parallel and distributed imple-
mentation. The sequential algorithm has a fast and
simple distributed implementation because the only
processing that is performed by this algorithm involves
specific nodes and their immediate neighbors. Let
there be | E | processors, one at each edge. There are
r specified pairs, (s,, 1;), (82, £2), ..., (s,). In the
procedure, each node will either get no label or
two labels. The first of the two labels is either /s; or
s;(lt; or t;, respectively), where s; designates the neigh-
bor of s from which the current node is reachable and
included in the tree rooted at that s;. The label is Is;
when the node is currently a leaf of such a tree rooted
at s;. The second label is the index of the node that is
the immediate predecessor of the current node on the
path from s;. The purpose of that second label is to
make possible the tracing of the identified path. The
labeling of ¢ vertices is analogous.

Let L be the number of leaves required for linking
in the sequential procedure, as established in
Lemma 3. The distributed algorithm will consist of
log, L1 synchronized pulses. A pulse is identical for
all processors. It uses as input the sets N(s) and N(¢),
the value of ¢, and the pairing,.

We define an array LINK, initially empty (all
zeros), of length 2¢, with each of ¢ positions con-
taining two words for the two endpoints of the edge
which is the linking edge of the pair of trees. Let
(u,v) E E.

pulse (u, v)

If exactly one end point (say) is labeled(/s;, z) do
label v, (Is;, u)
relabel u, (s;, z)

else, end

If both endpoints are labeled and

one, (say u), has a leaf labeled (Is;, z) do
if v is labeled (/t;, w) or
(t;, w) and LINK(i) = 0, set LINK(i) = (&, v)
else, end

else, end.

For simultaneous WRITE, any rule such as random
write, first write, last write, or lowest index write will
be appropriate. Simultaneous READ is allowed.

This procedure, once terminated, establishes all re-
quired linkages under the same conditions as the
sequential procedure. The paths created are of length
2log, L1 at most. Note that the expected length of a
path is 2log, L1. Since we do not count the number
of leaves in the distributed procedure, log, L1 layers
are sufficient to guarantee almost surely, with at least
L leaves for each subtree (in fact, O(log, L) will
suffice).

The path identification can be executed in logarith-
mic time in the length of the path (i.e., log,log, L)
using the procedure in which the node index is com-
municated to nodes that are at a distance of / edges
away with the value of / doubling at each iteration
(see, e.g., Cole and Vishkin 1986). Actually, such a
sophisticated procedure is not necessary in our case.
Even a strightforward procedure that sends back the
labels of the path, one layer at a time, will take at
most log, L1 stages which is the maximum number
of layers. Using this straightforward procedure in-
creases the running time log, L by a factor of two at
most.

This distributed procedure runs faster than ©(log »)
since L is o(n). It is applicable for ¢, up to O(n/log n)
(see Lemma 4).

As a version of the sequential procedure, the distrib-
uted algorithm works for ¢, = O(n/log n). Beyond
that range, it might run out of vertices. For the range
¢, = Q(n/log n), there is almost surely a perfect match-
ing between the two sets of vertices, N(s) and N(¢).
(Following the analysis of Section 3, such matching
already exists for ¢, = Q(~/n log n).) The parallel and
distributed version we suggest for this range of densi-
ties involves a procedure similar to the greedy match-
ing algorithm of Goldschmidt and Hochbaum
(1990b). Namely, after setting aside a small set of
vertices on each side of the bipartition, we find
a greedy matching which is a maximal matching.

Algorithm for Max-Flow Problems [933

Vertices that were not successfully matched are then
matched with the set of vertices which was set aside—
of size (1/p)log.(1/p), using any perfect matching
algorithm. We propose to execute the maximal match-
ing using Luby’s NC? parallel (and distributed) algo-
rithm (Luby 1985). That will take O(log? r) steps. The
matching can then be completed by using Angluin
and Valiant’s algorithm. It runs in O(n log n) expected
time on a graph with » nodes. On the remaining
graph, there are O(log n log log n) nodes, so the
expected running time is O(log? r). Hence, the overall
procedure has a distributed and parallel implementa-
tion which is faster than O(log? n).

9. EMPIRICAL STUDY

The algorithms were implemented on an IBM/RT
using APL. Problems with up to 20,000 vertices were
tested and none took more than 30 seconds. For larger
and denser graphs, the only difficulty is storing the
graph. The number of steps is still very small, but
the access to secondary memory to look up an edge
or an adjacency list becomes the dominant factor.

To separate the actual running time of the algorithm
from the factor of memory lookup, we provide, in
addition to the running time of the program (CPU +
disk accesses), the number of edge slots and nodes
looked up by the algorithm. This measures the actual
efficiency of the algorithm.

Table I illustrates the results of the runs on graphs
with 5,000 vertices with various densities. For each
density (designated as a function of #n), there are five
graphs tested. On each such graph, we ran both the
parallel and the sequential procedures. The values
given are the average of the five runs. The proven
optimal solution was attained for all graphs tested.

As the graph density increases there are more paths
(or, equivalently, more flow) to identify. This naturally

Table I
Random Graph on 5,000 Vertices
Sequential Neighbor Linking Sequential Slots Linking Parallel
Number Number

Average Number of Sec. of Sec. of Sec.

Cn Flow Vertices ~ Steps/Phase Run Vertices Steps/Phase Run Vertices Steps/Phase Run

log, 7.1 1,134 159 4 1,014 282 43 650 62 16
v/ log. n 14.8 1,569 142 9 502 187 92 931 40 24
n log. n 31 2,834 157 16 2,320 181 101 444 35 12
2n log, n 65 4,599 240 32 2,873 142 185 529 39 22
vn log. n 223 (1) 5,000 352 81 4,528 187 210 675 58 30

Y, fail

934 / HOCHBAUM

increases the time requirement. For this reason, the
relevant running time or number of steps is specified
per path.

Table 1 also provides the data for both linking
procedures. As is evident from the table, and graphed
for the sequential algorithm in Figure 1, the break-
point between the neighbor linking and the slots link-
ing procedures conforms to the theoretical result in
Lemma 5. That is, the breakpoint for the sequential
algorithm occurs for the density of ¥n log, n.

As it turns out, the number of steps per path gen-
erated is close to a constant (though the sample size is
too small to determine that with high confidence). An
illustration of that is given in Figure 2. For the
sequential procedure we take the running time from
the neighbor linking procedure, for densities up to
Vn log, n, and then we use the running time from the
slots linking procedure, which is the lower envelope
of the two running time functions. Figure 2 also
illustrates that the parallel algorithm is much more
efficient and should be used whenever a specific pair-
ing of vertices is not required.

Figure 3 illustrates another advantage of the parallel
algorithm: The total number of vertices remains es-
sentially constant as the graph density goes up,
whereas it grows for the sequential algorithm. The rate
of growth of the number of vertices used by the
sequential algorithm goes up, according to the analy-
sis, at a rate of the square root of the density (see the
statement preceding Lemma 4), where for the parallel
algorithm Corollary 1 indicates that the rate of growth

4
300
,240
/
g / Linking by Neighbors
2 200
1 181/
2 187 V:
4
% s
7 —— s
s -
[~] 142 142
: Linking by Slots
=
e
e 100_]
g
H
+ + -
1 Yilogen Ynlogen 23 mlogen Co
2V N

Figure 1. Breakpoint for linking procedures graphs
having 5,000 vertices.

400+

Sequential Linking
351} by Neighbors

/
3004 282 /¢
4 >
£ /
) &
L 7
€
=3
g 200 Sequential Linking
bt o by Slots
187
[¥
159 x5y
142 142
100
Parallel
-
) ~ -~ - -
62 N — e 58
40 35 39
+ T T T
Wen Ly Y e i G

Figure 2. Number of steps versus density graphs
having 5,000 vertices.

is at most the logarithm of the density. These are both
conservative measures according to our empirical
results.

Table II gives the results of running the sequential
algorithm on graphs on 7 vertices, with # varying from
500 to 20,000. All these graphs have density deter-
mined by ¢, = log.n. Higher densities were not tested
due to data storage difficulties. Yet the theoretical and
empirical results indicate that in terms of the number
of steps the performance required to achieve the
opitmal solution would be similarly small. The run-
ning times reported in Table II are larger than those

A
5000
4528
Sequential
4000
#
3
g
2 3000 |
<
)
8
£
2000 4
1000
N 675 Parallel
- N e
[N -
650 N -
e 529
444
N —_— oy y—— —_ g
logen %\3/,,,0&,, Ynlogen 2y miogen nlogen Cn

Figure 3. Number of vertices used versus density
graphs having 5,000 vertices.

Table I1
Random Graphs With ¢, = log, n

Number of Percent Steps/ Msec./
Vertices Flow Vertices Phase Phase
500 5.2 34.73 53.06 2,894
1,000 34 18.3 73.90 4,160
2,000 5 18.46 101.93 4,837
5,000 7.1 22.7 159 5,122
10,000 6.8 13.63 254.80 2,155
20,000 7.2 9.2 303.18 3,092

reported in Table I because the tests in Table II were
run on an IBM/AT instead of an IBM/RT.

To conclude, the empirical results verify the theo-
retical ones. They indicate that the theoretical bounds
are conservative and the actual performance is sub-
stantially better. It is important to note that all the
functions given with the big O notation have very
small constant coefficients, so this notation does not
hide horrendously large values. The algorithms work
well for the entire range from very small to very large
graphs. Due to the range of applicability and the fact
that the algorithms here do not even read the entire
input, they constitute a substantial improvement over
all known algorithms that require at least the reading
of all the input.

NOTES

Throughout, we use the o, O, Q and © notation. A
function f(n) is said to be o(g(#n)) if lim sup,_.« f(n)/
g(n) = 0. It is said to be O(g(n)) if there is a constant
¢ such that f(n) < cg(n) for all but finitely n, while
f(n) is said to be Q(g(n)) if there is a constant ¢ such
that f(n) = cg(n) for all but finitely ». Finally, f(n) is
said to be ©(g(n)) if there exist ¢, = ¢, > 0 such that
¢,8(n) = f(n) = c,g(n) for all large enough #.

ACKNOWLEDGMENT

I wish to thank the referees for the detailed comments
and editorial suggestions. These considerably im-
proved the presentation. This research was supported
in part by National Science Foundation grant ECS-
85-01988, and by Office of Naval Research grants
N00014-88-K-0377 and N00014-91-J-1241.

Algorithm for Max-Flow Problems | 935
REFERENCES

ANGLUIN, D., AND L. G. VALIANT. 1979. Probabilistic
Algorithms for Hamiltonian Circuits and Matchings.
J. Comput. and Syst. Sci. 18, 155-190.

CHERIYAN, J., T. HAGERUP AND K. MEHLHORN. 1990.
Can a Maximum Flow Be Computed in o(mn)
Time? ICALP, 118-123.

CoLE, R., AND U. VIsHKIN. 1986. Deterministic Coin
Tossing With Applications to Optimal Parallel List
Ranking. Inform. Control 70, 32-53.

ErDOS, P., AND A. RENYIL 1960. On the Evolution of
Random Graphs. Publ. Math. Inst. Hung. Acad. Sci.
5,17-61.

EVEN, S., AND R. E. TARJAN. 1975. Network Flow and
Testing Graph Connectivity. J. SIAM Comput. 4,
507-518.

GOLDBERG, A. V., AND R. E. TARJAN. 1988. A New
Approach to the Maximum Flow Problem. J. ACM
35, 921-940.

GoLpscHMmIDT, O., AND D. S. HocHBAUM. 1990a.
Asymptotically Optimal Linear Algorithm for the
Minimum k-Cut in a Random Graph. SIAM J.
Discr. Math. 3, 58-73.

GOLDSCHMIDT, O., AND D. S. HoCcHBAUM. 1990b. A Fast
Perfect Matching Algorithm in Random Graphs.
SIAM J. Discr. Math. 3, 48-57.

GRIMMETT, G. R., AND A. D. R. WELSCH. 1978. Flow in
Networks With Random Capacities. Stochastics 7,
205-229.

HassIN, R., AND E. ZEMEL. 1988. Probabilistic Analysis
of the Capacitated Transportation Problem. Math.
Opns. Res. 13, 80-89.

KARP, R. M. 1979. The Probabilistic Analysis of Com-
binatorial Optimizations Algorithms. Presented at
the 10th International Symposium on Mathematical
Programming, Montreal.

KARP, R. M., R. MOTWANI AND N. NISAN. 1987. Prob-
abilistic Analysis of Network Flow Algorithms.
Report No. UCB/CSD 87/392, University of
California, Berkeley.

KING, V., S. RAO AND R. TARJAN. 1991. A Faster Deter-
ministic Maximum Flow Algorithm. Extended
Abstract.

LuBy, M. 1985. A Simple Parallel Algorithm for the
Maximal Independent Set Problem. 17th Annual
ACM STOC 1-10.

LYNCH, J. F. 1975. The Equivalence of Theorem Proving
and the Interconnection Problem. ACM SIGDA
Newsletter 5, 3.

MotwaNi, R. 1990. Expanding Graphs and the Average-
Case Analysis of Algorithms for Matchings and
Related Problems. 21st Annual ACM STOC,
550-561.

