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In an observational study, one is given disjoint samples of treatment units and control (untreated) units,
and the goal is to compare outcomes between the two samples in order to estimate a treatment effect. A
complication is that the treatment and control units often differ on important pre-treatment attributes,
and these differences, referred to as covariate imbalance, can bias the estimate. One method to correct
for covariate imbalance is to select a subset of the control sample that has minimum imbalance with
respect to the treatment sample, and then use this control subset for estimating the treatment effect.
While this optimization problem is NP-hard in general, certain special cases can be solved efficiently.
Specifically, the variant of this optimization problem with one covariate is easy to solve, the variant with
three or more covariates is NP-hard, and the variant with two covariates is solvable in polynomial time.
We present several network flow formulations for the problem of minimizing imbalance on two nominal
covariates. First, we present a minimum cost network flow formulation for solving the problem with the
constraint that the control subset must have the same size as the treatment sample. We then derive
an improved maximum flow formulation. For alternate size restrictions on the control subset, we use
a proportional imbalance objective which leads to non-integral supplies and demands in the preceding
network flow formulations. We then derive an alternate minimum cost network flow formulation that
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ensures integrality and solves the proportional imbalance problem in polynomial time.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Researchers in many fields are confronted with the problem of
identifying causal connections between actions (treatments) and
outcomes. In an observational study, the researcher observes a
sample of units that received treatment (called the treatment sam-
ple) along with another (typically larger) sample of units that did
not (called the control sample). The researcher generally does not
have direct control over the treatment allocation process, which
makes it difficult to attribute differences in outcomes between the
two samples to the treatment itself. Despite this difficulty, the ease
of access to ever-increasing quantities of observational data make
such studies popular across a wide range of disciplines, includ-
ing social sciences and medicine (Rosenbaum, Ross, & Silber, 2007;
Yang, Small, Silber, & Rosenbaum, 2012; Zubizarreta, 2012). Addi-
tionally, observational studies can often be performed more quickly
than rigorous experimental studies, which require significant time
and effort to set up and conduct. This allows researchers to ad-
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dress important time-sensitive questions where it is desirable to
have a good answer now instead of waiting for a perfect answer
later. The COVID-19 pandemic is one such situation; see Kim &
Eisen (2020) for additional discussion.

Many methods have been developed for estimating treatment
effects in observational studies. A common theme across these
methods is that they attempt to adjust for differences in important
pre-treatment attributes called covariates that may confound the
treatment effect estimate. Examples of covariates in medical data
include age, height, weight, blood pressure, disease history, and/or
genetic information. Differences on these covariates between the
treatment and control samples are referred to as covariate imbal-
ance. There are many ways to measure imbalance based on the
type of the covariates. For example, for a continuous covariate, the
difference in mean value between treatment and control samples
is referred to as mean imbalance. For a nominal covariate with a
discrete set of values, or levels, the difference in number or propor-
tion of treatment and control units at each level, summed across
all levels, provides another imbalance measure. We focus here on
a particular goal for adjustment with nominal covariates called the
min-imbalance problem. The min-imbalance problem is trivial for a
single covariate and NP-hard for three or more covariates, as dis-
cussed next. For the case of two covariates, we introduce and an-
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alyze several network flow algorithms that solve the problem in
polynomial time.

Let the sizes of the treatment and control samples be n and r’,
respectively, and let P be the number of covariates to be balanced.
Each covariate p partitions the treatment and control samples into
ky levels each. Let the levels of the treatment sample under co-
variate p=1,...,Pbe Ly, Ly, ... Lk, of sizes £p1.£p2. ..., Cpkyr
and let the levels of the control sample under covariate p be
L;l,LQ)Z,...,L;.k of sizes Z;J,E;Yz,...,%’kp. The min-imbalance
problem is to find a subset of the control sample of size n, called
the selection and denoted by S, such that the numbers of units at
each level in the treatment sample and the selection are as close
as possible:

p k
(min-imbalance) mmZi NS
p=1i=1

Cpi| st |S|=n.

In the case of a single covariate, P = 1, the solution to the min-
imbalance problem is trivial: for any level i, if ¢;; < Z’“, then the
optimal selection takes any ¢;; control units from level i; other-
wise, the optimal selection takes all ¢} ; control units from level i.
After this, take enough remaining control units from any level to
reach a selection size of n. Let ¢, denote the number of control
units in the selection at level i. Then the value of the objective
function corresponding to this selection is ZH |Z],i —el,,-], which
is the optimal value for the single covariate min-imbalance prob-
lem.

For the min-imbalance problem with multiple covariates,
Bennett, Vielma, & Zubizarreta (2020) presented a mixed integer
programming (MIP) formulation and showed that the correspond-
ing linear programming (LP) relaxation yields an integer solution
when P < 2. For P =3 they presented an example where the LP
relaxation’s solution is not integral and noted that the problem is
NP-hard (proofs can be found in Hochbaum & Rao, 2020; Sauppe,
2015, and Appendix A).

1.1. Additional imbalance problems

The min-imbalance problem with one covariate occurs in the
context of the near-fine balance matching procedure of Yang et al.
(2012). In near-fine balance, the goal is to find an optimal match-
ing of treatment units to control units subject to the constraint
that imbalance on a nominal covariate is as small as possible (see
Section 1.3 for more details). This problem can be solved using a
two-stage process that first determines the minimum imbalance
and then seeks an optimal matching (based on a distance measure
between treatment and control units) that meets the imbalance re-
quirement.

We consider a general formulation of the near-fine balance
problem involving multiple covariates where each treatment unit
needs to be matched to k control units, where « is an integer that
satisfies 1 <k < "W/ We refer to this problem here as «-Matching-
Balance (MB). In the first stage of MB, the goal is to find a selection
S of size «n, that solves the min-«x-imbalance problem defined as:

P kp

min) )" ‘ ‘SﬂL;’,-‘ - sz_i‘ s.t. |S| = kn.

p=1i=1

(min-k-imbalance)

In the second stage of MB, among all selections of control units
that attain the minimum «-imbalance, one chooses the selection
that minimizes the distances from matching each treatment unit
to exactly « selected control units. Yang et al. (2012) studied the
MB problem for a single covariate and proposed two network flow
algorithms. There is no prior work for the MB problem with two
or more covariates, even in the first stage.

[m5G;November 16, 2021;19:38]

European Journal of Operational Research xxx (XXxx) Xxx

The min-imbalance problem can also be extended to situations
in which the selection size g need not equal the size of the treat-
ment sample. This gives rise to the min-proportional imbalance
problem defined as:

(min—proportional imbalance)
K
o lSnL] e,y

minzz T_T

With g =n, min-proportional imbalance is equivalent to min-
imbalance with objective scaled by 1/n; with q=«n for some
integer «, min-proportional imbalance is equivalent to min-k-
imbalance with objective scaled by 1/(xn).

s.t. |S| =q.

1.2. Contributions of paper

Our main results here are efficient algorithms for the min-
imbalance, min-«x-imbalance, and min-proportional imbalance
problems with two covariates.

For the min-imbalance problem with two covariates, we
present an integer programming formulation related to that in
Bennett et al. (2020) and show that the constraint matrix is to-
tally unimodular. This implies that the linear programming relax-
ation to the problem has integer extreme points, and in particular
that its optimal solution is integral. We then show that the min-
imbalance problem with two covariates can be solved with special-
ized graph algorithms for network flow problems, which is more
efficient than solving via linear programming. Specifically, we show
how to formulate this problem as a minimum cost network flow
problem and solve it in O(n- (n’ +nlogn)) steps. We also provide
a more efficient maximum flow formulation that can be solved in
o(n'3/2 log2 n) steps. These two methods can also be applied to the
min-imbalance problem with a selection size g with q # n (see Ap-
pendix B).

For the min-proportional imbalance problem with two covari-
ates and a selection size q with q # n, we show a minimum cost
network flow formulation that can be solved in O(q - (n’ + nlogn))
steps (an alternate minimum cost network flow formulation was
provided in the unpublished thesis of Sauppe (2015) in the context
of the BOSS framework discussed in Section 1.3).

We also show (in Appendix C) that the min-x-imbalance prob-
lem is equivalent to the min-imbalance problem (for any number
of covariates), and therefore an optimal solution to a correspond-
ing min-imbalance problem provides an optimal solution to the
min-«-imbalance problem. As such, the first stage of the MB prob-
lem with two covariates can be solved with any of the algorithms
shown here. We also observe that, for any number of covariates,
if the optimal solutions to the first stage problem of minimizing
the k-imbalance have a particular form (see Appendix C for de-
tails), then an optimal solution to the second stage, and therefore
to the MB problem itself, can be obtained by solving a network
flow problem. This implies that, under certain conditions, the MB
problem with two covariates can be solved efficiently with net-
work flow techniques.

Lastly, we provide a proof (in Appendix A), similar to the proof
in Sauppe (2015) and presented independently in the arXiv paper
of Hochbaum & Rao (2020), that the min-imbalance problem is NP-
hard for three or more covariates.

Demonstrating how to solve these problems efficiently with
two covariates sheds important light on their structure. Addition-
ally, knowing that the problems are NP-hard with 3 or more co-
variates justifies the use of implicit enumeration techniques and/or
heuristics for solving them in practice. It also opens up directions
for future work in solving these NP-hard problems by using two-
covariate subproblems in various ways (e.g., for bounds in branch-
and-bound).
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1.3. Related work

Matching methods (Stuart, 2010) have been widely used to es-
timate treatment effects within observational studies. These meth-
ods attempt to reduce covariate imbalance by pairing each unit in
the treatment sample with a similar unit in the control sample,
where similarity is defined using a function of the units’ covari-
ate values. The treatment effect is then estimated as the average
difference in outcomes across all matched pairs, where unmatched
units from the control sample are ignored. If the matched pairs
have identical values for all covariates that impact the outcomes
(i.e., they are exactly matched), then the associated treatment ef-
fect estimate will be unbiased.

In practice, exactly matched pairs often do not exist in the
available data. Rosenbaum (1989) and Rosenbaum et al. (2007) de-
veloped a concept known as fine balance. In fine balance, the dis-
tances between units are computed using all but one nominal co-
variate. The goal is to find a minimum-distance matching subject
to the constraint that the number of matched control units equals
the number (or proportion) of treatment units at each level of the
nominal covariate. Rosenbaum (1989) gave a minimum cost net-
work flow formulation for the fine balance problem; we show in
Appendix C that fine balance is a special case of x-matching bal-
ance so it can also be solved with the method presented there.

It is not always feasible to satisfy the fine balance requirement.
Several papers considered the goal of minimizing the violation of
this requirement, which we refer to as (covariate) imbalance. Yang
et al. (2012) proposed near-fine balance, which considers finding an
optimal matching between the treatment sample and a subset of
the control sample where the subset minimizes an imbalance mea-
sure on a single nominal covariate. Zubizarreta (2012) extended
near-fine balance to multiple covariates which could be nominal or
quantitative.

Nikolaev, Jacobson, Cho, Sauppe, & Sewell (2013) sought to ad-
dress the difficulties of finding exactly matched pairs by eliminat-
ing matching entirely and instead focusing on covariate balance as
the measure of quality. In the Balance Optimization Subset Selec-
tion (BOSS) framework, the goal is to identify a subset of the con-
trol sample that minimizes a covariate imbalance measure with
respect to the treatment sample. The choice of imbalance mea-
sure used by BOSS is flexible and can accommodate nominal and
quantitative covariates as well as covariate interactions. The min-
imbalance and min-proportional imbalance problems are special
cases of BOSS; Bennett et al. (2020) examined the min-imbalance
problem using integer and linear programming. Computational ex-
periments by Nikolaev et al. (2013), Sauppe, Jacobson, & Sewell
(2014), and Sauppe & Jacobson (2017) show the value of using co-
variate balance as a primary objective in observational studies.

Sauppe et al. (2014) combined covariate balance and matching
into the balanced matching problem which seeks a matching that
pairs each treatment unit with one or more control units and min-
imizes an objective function consisting of a linear combination of
the matched pair distances and a covariate imbalance measure.
For a particular imbalance measure defined on nominal covari-
ates, Sauppe et al. provided a mixed integer programming (MIP)
model and proved that the problem can be solved in polynomial
time through network flow techniques if balance is sought on a
single covariate. In addition, they proved that the problem is NP-
hard if balance is sought on two or more covariates. The special
case of balanced matching where the objective uses only the im-
balance component and omits the matching distances reduces to
BOSS; Sauppe et al. noted that the resulting problem is solvable in
polynomial time for two covariates but NP-hard for three or more
covariates. These remarks applied only for selection sizes that are
integer multiple of n. The unpublished thesis of Sauppe (2015) pro-
vides proofs of these results for any selection size.
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1.4. Overview of paper

Section 2 provides the notation used here. In Section 3 we an-
alyze an integer programming formulation of the min-imbalance
problem with two covariates. We then present and analyze a
minimum cost network flow formulation for this problem in
Section 4 and a more efficient maximum-flow formulation in
Section 5. In Section 6 we show how to solve the min-imbalance
and min-proportional imbalance problems with two covariates and
a selection size q with ¢ # n. Concluding remarks are presented
in Section 7, and supplemental results are provided in the appen-
dices.

2. Preliminaries and notation

The goal of the min-imbalance problem is to identify a subset of
the control sample, called the selection, such that the numbers of
treatment units and selected control units in each level of each co-
variate are as close as possible. For a selection S of control units we
define the discrepancy at level i under covariate p as dis(S, p, i) =

sz,
ative. If the discrepancy is positive we refer to it as excess which
is defined as e, ;(S) = max{0, dis(S, p.i)}, and if negative, we refer
to it as deficitd,, ;(S) = max{0, —dis(S, p, i)}. With this notation the

imbalance of a selection S is IM(S) = Z’;ﬂ 25.1’1 (ep_l-(S) + dp,,-(S)),

which is identical to Z’;=1 Zfz”] [1SN L;“.| — £p;|. For this imbalance
measure, if any covariate p has two levels i and j with i+# j and
£pi=¢, =0, then we can merge levels i and j without impacting
imbalance. As such, we assume that the number of levels k, for
any covariate p is at most n + 1.

We now present the integer programming formulation that was
given by Bennett et al. (2020) for the min-imbalance problem. That
integer program involves two sets of decision variables: for each
j=1,...,7, the binary variable z; is equal to 1 if control unit j is
in the selection S, and 0 otherwise; and for each p=1,...,P, and
i=1,...,kp, the variable yp; = |dis(S, p,i)| = ||SmL;j| —£pi| Tep-
resents the absolute value of the discrepancy at level i under co-
variate p. With these variables the formulation is:

—¢p ;. The discrepancy of a level can be positive or neg-

P kp

min S Vi (1a)

p=1 i=1

st. > zj—lpi<ypi p=1....P i=1..k  (1b)
jEL;,i
bpi— Y Zj <Ypi p=1,...,P, i=1,....kp (1c)
jeL;.i
”
ZZ]':TI (1d)
j=1
zj € {0, 1} j=1,...,n. (1e)
For each pair p,i with p=1,...,Pand i=1,...,kp, constraints

(1b) and (1c) ensure that y,; assumes the absolute value of the
difference between the number of selected level i control units and
£p; at an optimal solution. These constraints also ensure that any
feasible y,; is non-negative and therefore a non-negativity con-
straint is not required for variable y,;. Constraint (1d) specifies
that the size of the selected subset equals the size of the treat-
ment sample.

Bennett et al. (2020) proved that any basic solution of the linear
programming relaxation of (1) is integral for P = 2. We provide in
Section 3 a stronger result showing that a slightly modified form
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of formulation (1) has a constraint matrix which is totally unimod-
ular for P = 2. This implies that every basic solution is integer, and
furthermore the constraint matrix is that of a minimum cost net-
work flow problem. As such, the problem can be solved more effi-
ciently with specialized graph algorithms instead of through linear
programming.

An optimal solution to formulation (1) specifies for each con-
trol unit whether or not it is in the selection. We observe however
that the output to the min-imbalance problem, for any number
of covariates, can be presented more compactly in terms of level-
intersections. Let K = ]'[’;:1{1, 2,...,kp}. For any (iy,iy,...,ip) €K,
define the level-intersection LT(]J’Z:»HJP = L’”1 er/z’,.2 n... le/’Jp' The
collection of level-intersections forms a partition of the control
sample. The number of non-empty level-intersections is at most
min {n’, ]'[g:1 kp}. So instead of specifying which control units be-
long to the selection, it is sufficient to determine the number of se-
lected control units in each level-intersection because the identity
of the particular selected control units has no effect on the imbal-
ance. This allows for reformulating (1) with variables x;, ;, i, rep-
resenting the level-intersection sizes for each (i1, iy, ..., ip) € K. To
derive a selection given the level-intersection sizes, one selects any
Xi iy....ip control units from each level-intersection Lz{piz.“,.ip' for all
(i1, 19, ...,1p) € K. This idea will be revisited in Section 4 and also
in Appendix C.

3. A modified formulation with a totally unimodular constraint
matrix for P =2

In this section we present an alternate integer programming
formulation for the min-imbalance problem with two covariates
and show that its constraint matrix is totally unimodular. In this
formulation, instead of using variables y,;, we use variables for

excess and deficit. As discussed in Section 2, HSmL;ﬂ.‘ 751,1,-‘ =

epi(S) +d,;(S) for each p and i. We let the variable for excess
for p and i be e,; and the variable for deficit be d,;. Note that
Ypi=epi+dp; where both e, ; and d,; are non-negative variables.

Additionally, for each p and i, ‘S n L;j‘ —{pi=e,;—dp;if and only

if ’SQL;JJ’ =+ dp’,' — epvi = Zp’,'.
In the modified formulation shown below, the constraints

(2b) and (2c) for the two covariates are separated to facilitate
the identification of the total unimodularity property. Because

L L', is a partition of the control sample, Z;‘;] SNl =

1,10 Mk
S|. Also, because ¢11,..., ¢y, are the sizes of the levels of the

treatment sample for the first covariate, it follows that Z;‘;l b=
! k

n. Therefore, 1, (e —dy ) = X1, (ISN Lyl — €14) = IS| —n. So

specifying |S| =n is equivalent to constraint (2d) in formulation

(2) given below:

2 ky

min D> (epi+dpi) (2a)
p=1i=1

S.t. sz+d1,,~—e]‘,~ =L, i=1,...,k (2b)

Jjel;

Z Zj+dyi—exi =1Ly
Jeby;

ky ki
=Y dii+) ei=0 (2d)
i=1 i1

epi,dpi >0 p=12 i=1,....kp (2e)
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z;e{0,1}) j=1,....n. (2)

Similar observations can be used to show that 17, e; = Y°I?, d;
for any covariate p, so the objective (2a) can also be written with
only the excess variables.

Lemma 1. The constraint matrix of the LP relaxation of formulation
(2) is totally unimodular.

Proof. In the constraint matrix of (2) each entry is 0, 1 or —1. Con-
sider the matrix resulting by multiplying the rows of constraint
(2¢) by —1. Each column in this new matrix has at most one 1
and at most one —1:

1. Both {L/1,1""’L/1,k1} and {L’le,...,L’zvkz} are partitions of the
control sample, so L/l.l""’L/l,kl are mutually disjoint as are
L’2_1, . "le,kz' The column of each z; has exactly one 1 in rows
corresponding to (2b), and one —1 (after multiplication) in rows
corresponding to (2c¢).

2. For each i, the column of d;; has exactly one 1 in rows corre-
sponding to (2b) and exactly one —1 in rows corresponding to
(2d); the column of e; ; has exactly one —1 in rows correspond-
ing to (2b) and exactly one 1 in rows corresponding to (2d).

3. For each i, the column of d,; has exactly one non-zero, 1 or
—1, entry in rows corresponding to (2c); the column of e, ; has
exactly one non-zero, 1 or —1, entry in rows corresponding to
(2¢).

Hence, by a well-known theorem (Theorem 7 in Appendix D)
this new matrix is totally unimodular. Multiplying some rows of
a totally unimodular matrix by —1 preserves total unimodularity.
Therefore, the constraint matrix of the LP relaxation of (2) is also
totally unimodular. O

Formulation (2) is also a minimum cost network flow (MCNF)
formulation (see Appendix D for a generic formulation of MCNF).
A generic MCNF formulation has exactly one 1 and one —1 in each
column of the constraint matrix. To make formulation (2) have this
structure, we multiply all coefficients in constraints (2c) by —1 and
add a redundant constraint 21.21 d2.i—2:21 e;;=0. In the next
section, we streamline this network flow formulation.

4. Network flow formulation for P = 2

Here we use the level-intersection sizes as variables, x; ;
for iy =1,...,kq, iy =1,...,ky. These variables can also be writ-

ten as x; j, =3y L Zie with upper bounds given by u;, ;, =
' Lip 2y ’

L/l.i1 nL, iz" With these decision variables we get the following

network flow formulation:

2 ky
min 22 (eni+dpi) (3a)
p=1i=1
ky
s.t. inl,iz +dl.i1 — €14 221,,'1 i1 = l,...,kl (Bb)

ip=1

ky

- Z Xi i, — o, + €24, = Lo,

ii=1

iz:],...,kz (3C)

ky ky
=Y diy+ ) e, =0 (3d)

ij=1 i=1
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(Z]JVI)

Fig. 1. MCNF graph corresponding to formulation (3). Arc labels have the form (cost, upper bound), and non-zero supplies and demands are displayed next to each node.

k, k,
D dyi,— > ey, =0 (3e)

i=1 i=1

epi.pi = 0 p=12i=1..k (3
ih=1,...,k,
0= Xy = Uiy =1 k. (3¢)

Formulation (3) is a minimum cost network flow problem. The
corresponding network is shown in Fig. 1, where all capacity lower
bounds are 0, and each arc has a cost per unit flow and upper
bound associated with it. Nodes of type (1,i;) each have supply
of ¢y ;,. Nodes of type (2,i) each has demand of ¢, ;,. For each i;
and i,, the flow on the arc between node (1,i;) and node (2,i,)
represents variable x;, ; . The arc from node 1 to node (1,i;) rep-
resents the excess eq; . The arc to node 1 from any node (1,i;)
represents the deficit dq ;. The arc from node 2 to any node (2, i)
represents the deficit d; ;,. The arc to node 2 from any node (2, i)
represents the excess ep;,. The per unit cost is 1 for arcs be-
tween node 1 or 2 and any node in {(1,1), (1,2),..., (1, k)}u
{(2,1),(2,2),...,(2,ky)}; all other arcs have cost 0. It is easy to
verify that constraints (3b) correspond to flow balance at nodes
(1,iy) for all iy, constraints (3c) correspond to flow balance at
nodes (2,iy) for all i. Constraint (3d) corresponds to the flow bal-
ance at node 1, and constraint (3e) corresponds to flow balance at
node 2. A small numerical example can be found in Appendix E.
(Note that (3a) can also be written with only the excesses such as
in formulation (5).)

Theorem 1. The 2-covariate min-imbalance problem with a selection
size of n is solved as a minimum cost network flow problem in O(n -
(' +nlogn)) time.

Proof. We choose the algorithm of successive shortest paths that is
particularly efficient for a MCNF with “small” total supply to solve
the network flow problem of the 2-covariate min-imbalance prob-
lem.

The successive shortest path algorithm iteratively selects a node
s with excess supply (supply not yet sent to some demand node)
and a node t with unfulfilled demand and sends flow from s to t
along a shortest path in the residual network (Busacker & Gowen,
1961; Iri, 1960; Jewell, 1958). The algorithm terminates when the
flow satisfies all the flow balance constraints. At each iteration, the
number of remaining units of supply to be sent is reduced by at

Fig. 2. Maximum flow graph. Arc labels indicate upper bounds.

least one unit, so the number of iterations is bounded by the total
amount of supply. For our problem the total supply is O(n).

At each iteration, the shortest path can be solved with Dijkstra’s
algorithm of complexity O(|A| + |V|log|V|), where |V| is the num-
ber of nodes and |A| is the number of arcs (Edmonds & Karp, 1972;
Tomizawa, 1971). In our formulation, |V| is O(ky + k), which is at
most O(n). Because the number of nonempty sets L'y ; NL'5; is
at most min{n’, k1k,}, the number of arcs |A| is O(min{n’, k1k;}).
Hence, the total running time of applying the successive short-
est path algorithm with node potentials on our formulation is
O(n-(n’ +nlogn)). O

5. Maximum flow formulation for P = 2

Here we show a maximum flow (max-flow) formulation (see
Appendix D for a generic formulation of max-flow problem) for
the min-imbalance problem with 2 covariates and a selection size
of ¢ = n. Unlike the previous formulations, the maximum flow so-
lution requires further manipulation in order to derive an opti-
mal solution to the min-imbalance problem with 2 covariates. That
max-flow graph is illustrated in Fig. 2 (see Appendix E for an ex-
ample). The source node s can send at most ¢;;, units of flow to
node (1,i;) for each i; =1,...,kq, the sink node can get at most
£y, units of flow from node (2,i) for each i, =1,...,ky, and
there can be a flow from node (1,i;) to node (2,i;) with amount
bounded by u;, ;,, fori; =1,....k; and i =1,..., k;.

Let the maximum flow value for the max-flow problem pre-
sented in Fig. 2 be denoted by f* and let x* be the optimal
flow vector, with xl.*1 , denoting the flow amount between node

=f*<

i

(1,i;) and node (2,i,). It is obvious that Zﬁlzl ke oy

ip=1"q.iy
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,]_1 €15, = n. That means an initial selection S’ generated by se-

lecting the prescribed number of control units as in the optimal
max-flow solution, i.e., selecting x;‘l i control units from L'y; N

L'y, is of size f*. In order to get a feasible solution for the min-
imbalance problem it is required to select n — f* additional control
units. The selection S’ has no positive excess, only non-negative
deficits with respect to the levels of both covariates. This is be-

cause le ]x; i, =6 due to the upper bound of the arc from s

to (1,i;) for each i;, and 211 1 11 i =
of the arc from (2,i,) to t for each i,.
To recover an optimal solution for the min-imbalance problem
from the initial set S, we add up to n — f* unselected control units,
one at a time, each corresponding to a level with positive deficit
under either covariate 1 or 2. This process is repeated until either
n — f* such control units are found, or until no such control unit
exists. In the latter case, to complete the size of the selection, any
randomly selected control units are added. Algorithm 1 is a formal

< {y,i, due to the upper bound

Algorithm 1
Initialization step: Select x:‘ i
set §'.
while |S'| < n do
if there exists a control unit j ¢ S’ whose covariate 1 level
is iy and covariate 2 level is iy, such that |[S'NL'y; | < ¢ or
|S/ N L/Z.i2| < 62,,-2 then,

control units from L'y; NL'5;, in

S <« S u{j}
else
Let S” =S and let ST be any n — |S’| control units¢ S'.

Set § « S'USt.
Output S'.

statement of this process of recovering an optimal solution of the
min-imbalance problem from the initial selection §'.

To show that Algorithm 1 provides an optimal solution to the
min-imbalance problem, we distinguish two cases of Algorithm 1:
(1) St =¢ and (2) |S*| = 1. In the first case, there is, at each it-
eration, at least one control unit that belongs to some level with
positive deficit. In Theorem 2 we prove that the output S’ of
Algorithm 1 is an optimal solution in this case.

Theorem 2. If St = ¢ then the output selection S’ of Algorithm 1 is
optimal for the min-imbalance problem, with an optimal objective
value of 2(n — f*).

Proof. First, we show that the total imbalance of the selection
S is IM(S") = 2(n — f*). At the initialization step the selection S’
has only deficits for all levels, with total deficit for covariate 1,
le 1 Wy — ZZ 1%i,.i,) =n— f*, and total deficit for covariate 2,
Zi2=1 (2,4, —Z:.‘::] Xi,i,) =n— f* At each iteration, there is an
added control unit, say in L'y NL'5;, such that either L'y ; or
I'y;, has a positive deficit with respect to S'. It is however im-
possible for both L’y ; and L', ;, to have a positive deficit with re-
spect to S’ since otherwise, there is an s, t-augmenting path, from
s to node (1,i;), to node (2,i,), to t, along which the flow can be
increased by at least one unit. This is in contradiction to the op-
timality of the max-flow solution x*. As a result, at each iteration
where a control unit is added, the total deficit is reduced by one
unit, and the total excess is increased by one unit. Thus, at each
iteration of the if step, the sum of total deficit and excess remains
the same, namely 2(n — f*).

Suppose, by contradiction, that there exists a selection S* for
which the total imbalance is lower, IM(S*) < 2(n — f*). We repeat
the following iterative procedure of removing control units from S*
until there is no positive excess remaining: while there is a level of
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either covariate with positive excess with respect to S*, we remove
one control unit of S* that belongs to this level. Each such itera-
tion results in the total excess reducing by at least 1 unit and the
total deficit increasing by at most 1 unit, and therefore the sum
of total deficit and excess does not increase. So when this iterative
procedure ends, the total excess is zero and the total deficit is at
most IM(S*). Let x; ;, be the number of control units remaining
in $*NL'y; NL'y;, after this excess removing procedure. Because
there is no positive excess, X is a feasible solution for the max-flow
problem with the flow between node (1,i;) and node (2, i,) equal
to x;, ;,- The sum of deficits associated with this remaining set is

ko
n- 211 =1 Zizzl Xiy iy
covariate 2, for a total of 2(n — 211—1 le—l Xiy i,
IM(S*). Therefore, the total flow value, Zkl_l 212 1 Xiy ip» Satisfies

that it is at least n — % Because n — % —(n—f*) = f*,
it follows that the value of the feasible flow induced by the set S*
is greater than the maximum flow value f*, which contradicts the
optimality of f*. O

. kq
for covariate 1 and n—zi1 1212 1%i,.i, for

i. ), which is at most

We now address the second case where |S*|>1 and [S”| < n.
In this case, the total imbalance of S” is, from the arguments in the
proof of Theorem 2, IM(S"”) = 2(n — f*). Each one of the |S*| con-
trol units selected adds 1 unit of excess to each covariate, result-
ing in the addition of 2 units of excess to the imbalance. Therefore,
the total imbalance of the output solution is 2(n — f*) +2|S*|. We
next show what the value of |S*| is, and then demonstrate that
any feasible selection to the min-imbalance problem has total im-
balance of at least 2(n — f*) + 2|S*|. This will prove that the out-
put of Algorithm 1, &, is an optimal solution to the min-imbalance
problem.

It will be useful to consider an equivalent form of Algorithm 1.
For each level i of covariate p that has [S'NLp;| < ¢,; we add
the largest number possible of available control units in L',; so
long as the total does not exceed n. This number is min{¢p; —
IS'OLp;l, Z;,i — | nlp;il}. Let £,;= min{zp_i,z;’i}, then for each
p.ithat has [S'NL',;| < ¢,; we add ,; — |S'NL',;| previously un-
selected control units to §'. The outcome of this equivalent proce-
dure is exactly the same as that of Algorithm 1. In the case that
|[ST| > 1 there is an insufficient number of control units to add to
S’ after the largest possible number has been added for all levels.
Therefore, at the end of this process, the if step returns that an-
other unselected control unit does not exist, and the total number
of control units of S”, for each level i of covariate p, is ;.

Lemma 2. If |ST|>1 (and |S"|=n—|St|<n) then |St|=n-
- - - - I - - k -
(€1 + & — f*) where £ = Zi<11=‘1 by and 6 =37 1 6,

Proof. At the initialization step of Algorithm 1, |S'| = f* and the
total deficit is 2(n — f*). Each time a control unit is added to S
in the if step, the total deficit is decreased by 1 unit. So we can
derive the value of |S”| when the algorithm terminates if we know
the total deficit when the algorithm terminates. Note that the total
excess may change, but we only consider here the deficit.

From the discussion above, the total number of control units
of §”, for each level i of covariate p, is ¢,;. We denote ¢; =

k
le 161 i and ¢, = Zi;:]
and Z; 2 &y, =n, the sum of deficits of set §” under covariate
= 212

. kq
1is Zi]:l 211'-1
variate 2 equals Zfzz:] b4, — £y i, =N — 5. It follows that the sum
of deficits of S” is 2n — &1 — £,.

Because the initial set S’ that has total deficit of 2(n— f*) has

its deficit reduced through Algorithm 1 to 2n —¢; — £, in the set
S”, the additional number of control units in S” that were added to

> kq
£5,i,- Because the sum Zi1=lz1vi1 =n

— {14, =n— {3, and the sum of deficits under co-
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the initial f* control units is 2(n — f*) — 2n — &1 — &) = 1 + {5 —
2f*. Therefore, the size of S is f* 4+ (&1 4+l — 2f*) =01 + &, — f*.
This number is less than n and the size of S* then satisfies |ST| =
n-— (Z] +l72 —f*) O

Corollary 1. If |S*| > 1 when Algorithm 1 terminates, the total im-
balance of the output solution S’ is IM(S') = 4n — 281 — 205.

Proof. The imbalance of S”, as in the proof of Theorem 2, is equal
to 2(n — f*). Because each control unit in ST adds two units to the
imbalance, the total imbalance of the output solution S is IM(S') =
2(n— f*) +2(n— (&1 + &5 — f*)), which is equal to 4n — 20, — 24,
as stated. O

Next, we prove that this is the minimum total imbalance
achievable.

Theorem 3. For any selection of size n, the total imbalance must be
greater or equal to 4n — 24, — 24,.

Proof. For the optimal selection S* of size n, let IM(S*) be the to-
tal imbalance of S*. We first classify the control units in S* into
three types, Sy, Sy, and S3, that form a partition of S*, using the 3-
type Classification Procedure shown in Algorithm 2. In the pro-

Algorithm 2

procedure 3-TYPE CLASSIFICATION
/* Initialize */
54—5*,5] %@,SZ <~ 0, 53 <~
Let dis(p.i) < [SNLp;| —tpifor p=1,2, i=1,.. kp;
/* S selection */
while there exists a control unit j in S whose covariate 1
level is iy, covariate 2 level is i, such that dis(1,i;) > 0 and
dis(2,i3) > 0 do
St <S5 u{i}s < Ss-{j}
dis(1,iy) < dis(1,iy) — 1dis(2,ip) < dis(2,i) — 1
/* Sy selection */
while there exists a control unit j in S whose covariate 1
level is i;, covariate 2 level is iy, such that dis(1,i;) >0 or
dis(2,i;) > 0 do
Sy < Su{jiLS < S—-{j}
dis(1,iy) < dis(1,iy) — 1,dis(2, i) < dis(2,i3) — 1
/* S3 selection */
53 «~S

cedure we use variable dis(p, i) to denote the value of dis(S, p, i),
discrepancy for selection S and level i under covariate p. With
this notation the excess of the corresponding level is e(S, p,i) =
max{0, dis(p, i)}, and the deficit is d(S, p, i) = max{0, —dis(p,i)}.

The output Sy, S5, S3 of the procedure is not unique because it
depends on the order in which control units are picked. However,
the statements of the theorem hold for any output of the proce-
dure. Note that in the procedure, whenever a control unit is picked,
any dis(p, i) can only go down. For that reason, once S; selection
ends, there will not be another control unit in S for which the dis-
crepancy values of the corresponding levels under the two covari-
ates are both positive. Furthermore, once the S; and S, selections
are done, dis(p, i) <0 for each p, i. That means, |S3NL'p;| < ¢,; for
all p,i.

Let the sizes of the three subsets be denoted by s; = |S1],s; =
[Sz],s3 = |S3]. We claim that the total imbalance of the control
units in S3 is IM(S*) — 2s;. For the S; selection part of the pro-
cedure, each control unit picked in S; reduces the total excess by
2. For each control unit selected in the S, selection part of the pro-
cedure, the excess is reduced by 1 and the deficit is increased by 1,
so the total imbalance does not change. Therefore, the total imbal-
ance of the control units in S3 is IM(S*) — 2s1. On the other hand,
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the total imbalance of S3, which equals the sum of deficits of both
covariates (all excesses equal zero as |S3NL'p;| < £p;), is 2(n —s3).
Then IM(S§*) — 2s; = 2(n — s3), and therefore

IM(S*) =2(n—53) +2s1 =2(n—53) +2(n—5y —S3)
= 4n — 25, — 4s3.

Here, the second equality comes from the fact that sy + s, +5s3 =n.

Next, we show that s, < (€1 —s3) + (f2 —s3). Let the control
units in S, be ordered according to the order they were picked,
JisJ2. -, Js;» We now add these control units to Ss, in the reverse
order js,,..., Jj1- When each control unit j; is added to Ss, the
deficit is reduced by exactly 1 unit. Once all the control units from
S, are added to S3, the deficit at each level of S, US;3 is zero, or
alternatively, dis(S; USs, p.i) =[(S,US3)NL',;| —£p; > 0 for each
p,i.

We now consider the total deficit of S3: By the definition of
£; and £,, the positive deficit of S3 under covariate 1 is at most
f1 —s3 and that the positive deficit of S3 under covariate 2 is at
most ¢, — s3. That means the size of S, is bounded by the amount
of this deficit, s, < (€1 —s3) + (£ — s3). Then we have

S2< (L1 —53)+ (I —53) & Sy +253 < {1+ 103
< IM(S*) =4n — 2sy —4s3
> 411723-1 7222.

We conclude that the total imbalance IM(5*) is at least 4n — 24 —
20,. That implies that the selection output of Algorithm 1, S,
which has a total imbalance of 4n — 2¢; — 245, is optimal. O

The conclusion from Corollary 1 and Theorem 3, is that for
|ST| > 1 when Algorithm 1 terminates, the output solution S’ is
an optimal selection to the min-imbalance problem. Together with
Theorem 2, we have that Algorithm 1 outputs an optimal selection
for the min-imbalance problem using the max-flow solution to the
flow problem in Fig. 2 as input.

Theorem 4. The maximum flow formulation of the 2-covariate
min-imbalance problem with a selection size of n is solved in

O(n/ - min {n%,n’%} -log? n) time.

Proof. We choose here the binary blocking flow algorithm of
Goldberg & Rao (1998) for solving the max-flow problem because
this algorithm depends on the maximum arc capacity which is a
small quantity in our formulation.

The complexity of the binary blocking flow algorithm for a
graph G = (V, A) is O(|A| 'min{|V|%, |A|%} . log% logU) where |V|
is number of nodes, |A| is number of arcs, and U is maximum
arc capacity. As argued earlier for the minimum cost network
flow formulation, the number of nodes in the network |V| is
O(kqy + ky), which is no more than O(n); and the number of arcs
is bounded by min{n’,kiky}. Although u; ; could be as large
as n/, a feasible flow to our maximum flow formulation can
not have more than ¢;; units of flow on the arc from node
(1,i7) to node (2,ip). Thus the maximum arc capacity U is ef-
fectively O(n). The ratio % < % < n. Hence, the running
time of applying the binary blocking flow algorithm to our max-
flow problem is O n’-min n%,n/% ~log2 n). The complexity of

Algorithm 1 is O(n) as the number of iterations is bounded by n,
and each iteration takes O(1) steps. Therefore, the running time
of solving the min-imbalance problem as a max-flow problem is

O(n’-min{n%,n’%} -log? n). |
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6. Network flow formulations for P = 2 and alternate selection
size

The preceding results apply when the selection S is required
to have size equal to n, the size of the treatment sample. If the
size of the selection is required to be some value q # n, then the
min-imbalance problem with P = 2 covariates can be solved using
either the min-cost network flow or maximum flow formulations
with appropriate modifications described in Appendix B.

With q # n, the min-proportional imbalance objective is more
appropriate than min-imbalance for causal inference applications.
We show here how to solve the min-proportional imbalance prob-
lem with two covariates and selection size q # n using an alternate
minimum cost network flow formulation (a variant of this formu-
lation was provided in Sauppe, 2015). For any selection S of size g,
we define the scaled proportional discrepancy at level i of covariate
passpd(S, p,i)=|SN L;,i| - %Ep,i- As before, the scaled discrepancy
can be positive or negative, leading to excess or deficit, respec-
tively, and defined as e ;(S) = max{0, spd(S, p,i)} and dp;(S) =
max{0, —spd(S, p,i)}. The min-proportional imbalance objective
can then be written as %ZL] Z:Z] (ep.i(S) +dpi(S)). We can for-
mulate the min-proportional imbalance problem as a mixed inte-
ger program using binary variables z; for each control unit and
non-negative variables e,; and d,; for excess and deficit, respec-
tively, for all p and i:

P kp
min = Z > (epi+dpy) (4a)
pll]
s.t. szerp,,‘fep,,-:%Zp_i p=1,....,P i=1,....k
JeLy;
(4b)
n/
szzq (4c)
j=1
epidpi =0 p=1,....P i=1,...k, (4d)
z;€{0,1} j=1,....,n. (4e)

Summing constraints (4b) across all values of i for co-
variate 1 and rearranging yields Z?/ﬂ Zj=Q+Z:21 (e1—dy ).
This means constraint (4c) can be replaced with the constraint
21‘11 (e1,; —dy1) = 0. A similar argument can be used to show that

Zf{‘y epi= Z:‘Zpl d,; for any covariate p=1,..., P. As such, the ob-
jective function can be reformulated to penalize twice the excess
while omitting the deficit, which will be useful for further refor-
mulation.

In the case of two covariates, we introduce variables x;, ; =

Zjd A, . Zj as before. Combining this with the above observa-
iy "2

tions and some additional modifications allows formulation (4) to
be transformed into the following:

2 ky
min = ZZeP, (5a)
p 1i=1
ky
S.t. ZXH i + dl i —€1i = 81 i it=1,..., kl (Sb)

ip=1

kq

q .
- ZXH iy d2 iy + €3, ip = _562,1'2 o

i1=1

Il
P
~
N
—~
wn
A
2
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ky oy
=Y di + > e, =0 (5d)

i=1 i=1
ky ky
Zdliz _Zeliz =0 (5e)
=1 =1
ep,isdp,izo p:]’z’ i:],...,kp (Sf)
iv=1,...,kq,
0 <X, < Uiy, i;:],..l,k;. (58)
iv=1,...,ky,
Xi i, €7 l; =1, ...,k;. (5h)

In contrast to formulation (3) from Section 4, formulation
(5) may have non-integral supply and demand values, and so we
retain integrality constraints (5h) on the variables associated with
the control unit selection. These constraints can be removed af-
ter some additional modifications. Specifically, we add new non-
negative variables ap;, and b, ; along with new constraints a,; <
L%ZW-J, bpj =< %@ni - L%ﬁp_iJ, and dp,i = %ep,i —0pi— bp,i for all
p=12andi=1,..., kp The last set of these new constraints de-
compose each deficit variable d, ; into a fixed “forward flow” 1¢,;,

n “integer backward flow” a,;, and a “fractional backward flow”
b, ;. Because a,; and b,; are non-negative, this has the effect of
imposing an upper bound of %Ep,i on dy; for each p and i. Con-
straints (5b) and (5¢) can be relaxed to dp; < %Zp_,-—kep’,-. so this
last set of new constraints does change the feasible region of for-
mulation (5). However, this does not impact optimality because
any optimal solution will set at least one of d,; and e;,; to 0. With
these modifications, the revised formulation is:

2
min *Zzep( (63)
p 1 i=1

ky

s.t. Z Xi, iy

ip=1

- ((11,1‘1 +b1«f1 +€'1<,'1) =0 i1=1,....k (Gb)

kq

Z Xll iy =

i1=1

((12,,‘2 + b2,iz + €2vi2) ib=1,....k (6¢)

ky

D (@i, + b, +eri) =g (6d)

=1

ky
= > (a2, + bas, +€25,) = —q (6e)

i=1
api, byiepi >0 p=12 i=1,...kp (6f)
a,; < {%zl,_iJ p=1.2 i=1...k  (6g)
by < %em - L%zp.,-J p=1,2, i=1.....k,  (6h)
i1 = 1, ey k s .
0= xi.jy < Uy b1 k. (6)
o 7 i]:],...,k], Gi
Xinip € ib=1,...,k ( '])
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Fig. 3. MCNF graph for formulation (7). Arc labels have the form (cost, upper bound), and non-zero supplies and demands are displayed next to each node. Costs displayed

in the figure omit a 2/q scaling.

Formulation (6) has integer supply and demand values, but
the upper bound constraints (6h) on the b,; variables may be
non-integral. To address this, we raise the capacity on b,; to

1, which allows us to send an additional 1— (4¢,;—|%¢,;])
units of flow along this edge, but we also add a cost of %

[1- (Lepi—|Lep:])] per unit of flow sent on edge by,;. This en-
sures that all demands, supplies, and capacities are integral. Lastly,
we drop the integrality requirements on the x;, ;, variables to get

the following MCNF formulation:
- lz b,;+e 7a
n p.i p.i p.i ( )

— (CI]JI +b]J‘1 +€]J‘l) =0 i1 = 1, ...,k] (7b)

kp

min - 233 [(1- (Fen

ky

s.t. Z Xi, iy

i=1

kiq
Zxﬁ,iz =0 i,=1,....ky (70)

i=1

(az,iZ + by, + eZ,iz) -

kq

D (ari, + b, +eri) =4 (7d)
=1
ky
= > (a2, + b2, +€25,) = —q (7e)
=1
=1,2,
Gy b €pi = 0 SRS (76)
=1,2,
pi = L%ep-"J Y ok (7g)
=1,2
byi <1 p=1.2 7h
pi = =1k (7h)
iv=1,...,k, .
0= Xiiy = Uity b=1. k. (70

The network associated with formulation (7) is shown in Fig. 3
(see Appendix E for an example). Because all supplies, demands,

and capacities are integral, formulation (7) has an integer optimal
solution.

Theorem 5. Let S7*) be an integer optimal solution to formulation
(7). Then the solution S® defined as

(6) _ (%) (6) (7*) q q (7%)
Xivh = iy, byi =b, [1 - (g‘fm - h%iJ)]bP,i

6) _ (7% (6) <7*) q q (7)
a=aip e =+ [1- (Geni= | oo ]) o

for all respective indices is optimal for formulation (6).

Proof. By construction, S® satisfies the flow balance constraints
(6b)~(6e) as well as the bounds constraints on all variables a,;,
ep.i» and x;, ;,. Additionally,

6) _ (7% , 14, . (@)
byi =byi" - [1 - (ﬁep” Lne”"D]b"’i
q q 7*

so it follows that 0 < bfi) <%e,i—|Ley;]. Hence, S® is feasible
for formulation (6). We also have

24 q q 7%, (7%
5[ G LS ]

so the costs of S7*) and $® in their respective formulations are
equal.
Suppose that $® is not optimal for formulation (6), and

let $®) be an optimal solution with 32% ]Zf”l el(ff)

2 Y2, Zf"l ef) We will use $6*) to construct a solution $) for
formulation (7). Before doing so, we make the following observa-

tion for any p=1,2 and i=1,...,kp: the constraints (6b), (6¢),
and (6j) imply that the quantity a(B*) + b(G*) + eﬁf*) must be an in-
teger. Then S is constructed as follows Let xm = (16*) for all

iy=1,...,ky and iy =1, ..., ky. The variables a(7) bgl), and e(7) for

eachp=1,2andi=1,..., k, are determined based on two cases

£69) _ @ _ g6 4 pE | pD
e®)—0. Let a._La.*erij, b

(6%) 6%)) _ | 4(6%) (6%) (7) (6%)
(am +bp.i ) [ap.i +bm J and e,i =€y -
tion, these values satisfy the flow balance constraints (7b)-(7e).
From constraints (6g) and (6h), we have

opi’ 55 = [+ (Rens = [Re0e]) = 2o

2k
235 e®
q pi’

p=1 i=1

Case 1:

By construc-
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so alf) satisfies constraint (7g). Combining e =

0 with the ear-
lier observation that al(fl.* ) 1 bfan'* ) +ep6,.*) is an integer implies that
afi* )+ b;ﬁi* ) is an integer, which means that b;;l.*) — 0 and hence it

satisfies constraint (7h). We also have

BN e
n - n

s0 S and S(7) have equal flow costs on the edges a,;, b, ;, and
ep; in their respective formulations.

(6*) (7)
pr - e

Case 2 ep-0 leta=af b} =b+
(1= (Reps— L35 ))]. and ey = e —[1— (e~ F250]))

By construction, these values satisfy the flow balance con-
straints (7b)-(7e). As 6(6*) > 0, we must have a(s*) | 4¢,;] and

b = Lepi— | £epi). because otherwise the cost of §©9 could
be decreased by moving some flow from edge e,; to either a,;
or by ;. Therefore, agi) and bgi) satisfy constraints (7g) and (7h),
respectively, with bgi) = 1. Additionally, through constraints (6b),
(6¢), and (6j), the quantity af‘;‘) +b§f"i*) +ef,.*) must equal some
integer z. Then ef*) z— (afi*) +b§f,.*)) =2z—(&¢,;). Combining

(6*)

this with e’ >0 implies that z— (Lep4) > 0, or equivalently

z> Loy Because z is an integer, z > %¢,; implies z> 1+ | 4¢p; .

Then
* q q q
i’ =2= (o) = (1 [300:]) - (3en)
q q
- (;em - L))

p i
and therefore e’ p

1- (2 1] ]
1 (2 ] oo

s0 S and S(7) have equal flow costs on the edges a,;, b
ep; in their respective formulations.

Using the construction process outlined in these two cases en-
sures that S(7) is feasible for formulation (7) and has the same cost
as S which is less than the cost of S(*), which contradicts the
optimality of S7*, O

> 0. We also have

e(6%
p i

p,i» and

Theorem 6. The min-proportional imbalance problem with two co-
variates and a selection size of q is solved as a minimum cost network
flow problem in O(q - (n’ +nlogn)) time.

Proof. The network associated with formulation (7) has O(n) ver-
tices, O(min{n’, k1k,}) arcs, and a total supply of g. As such, the
algorithm of successive shortest paths can be applied to solve this
MCNF in O(q - (n' +nlogn)) time. O

7. Conclusions

We present new insights to the min-imbalance problem that
involves the selection of units from a control sample with the
goal of minimizing covariate imbalance with respect to a treatment
sample. We show that an integer programming formulation of the
problem on two covariates has a totally unimodular constraint ma-
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trix. We then present and analyze two efficient approaches to solve
the problem for two covariates and a selection size of n. The first
approach is based on minimum cost network flow, and the second
more efficient approach is based on a maximum flow formulation.
In addition, we show how these results can be applied to a re-
lated two-stage problem involving minimum imbalance in the first
stage and matching in the second. In the case that the selection
size differs from n, we show how to solve both the min-imbalance
and min-proportional imbalance problems efficiently with two co-
variates. In particular, proportional imbalance requires an alter-
nate MCNF formulation to deal with non-integral supplies and de-
mands. We also provide a proof that the min-imbalance problem
is NP-hard for three or more covariates. The solutions for the two-
covariate problems can be used in problems with three or more
covariates, for example by aggregating covariates into two repre-
sentative covariates or by providing bounds in a branch-and-bound
algorithm; exploring these ideas is left for future work.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.ejor.2021.10.041
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