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Identifying Drug Sensitivity Subnetworks with NETPHIX

Yoo-Ah Kim,1,5,* Rebecca Sarto Basso,2,5 Damian Wojtowicz,1 Amanda S. Liu,3,7 Dorit S. Hochbaum,2

Fabio Vandin,4,6 and Teresa M. Przytycka1,6,8,*
SUMMARY

Phenotypic heterogeneity in cancer is often caused by different patterns of ge-
netic alterations. Understanding such phenotype-genotype relationships is
fundamental for the advance of personalized medicine. We develop a computa-
tional method, named NETPHIX (NETwork-to-PHenotype association with eXclu-
sivity) to identify subnetworks of genes whose genetic alterations are associated
with drug response or other continuous cancer phenotypes. Leveraging interac-
tion information among genes and properties of cancer mutations such as mutual
exclusivity, we formulate the problem as an integer linear program and solve it
optimally to obtain a subnetwork of associated genes. Applied to a large-scale
drug screening dataset, NETPHIX uncovered gene modules significantly associ-
ated with drug responses. Utilizing interaction information, NETPHIX modules
are functionally coherent and can thus provide important insights into drug ac-
tion. In addition, we show that modules identified by NETPHIX together with
their association patterns can be leveraged to suggest drug combinations.
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INTRODUCTION

Genetic alterations in cancer are associated with diverse phenotypic properties such as drug response or

patient survival. However, the identification of mutations causing specific phenotypes and the interpreta-

tion of the phenotype-genotype relationships remain challenging owing to a large number of passenger

mutations and cancer heterogeneity. Indeed, the relationships between genotype and phenotype in

most tumors are complex and different mutations in functionally related genes can lead to the same

phenotype.

Predicting drug responses and identifying their genotypic causes is one of the most critical problems in

cancer studies and crucial for developing personalized treatments. Pharmaceutical drugs are often

developed to target specific genes, and the response depends on the function and the mutation status

of the gene as well as other genes in the same or related pathways. Recently, several projects have char-

acterized drug sensitivity in hundreds of cancer cell lines for a large number of drugs (Yang et al., 2013;

Barretina et al., 2012). These data, together with information about the genetic alterations in these cell

lines, provided unprecedented opportunities to understand how genetic alterations affect drug

sensitivity.

The pathway-centric view of cancer (Hanahan and Weinberg 2011; Garraway and Lander 2013; Vogelstein

et al., 2013) suggests that cancer phenotype should be considered from the context of dysregulated path-

ways rather than from the perspective of mutations in individual genes. Such a pathway-centric view signif-

icantly advanced the understanding of the mechanisms of tumorigenesis. Many computational methods to

identify cancer driving mutations have been developed based on pathway-centric approaches (Chuang

et al., 2007; Vandin et al., 2012; Kim et al., 2013; Hofree et al., 2013; Kim et al., 2016a; Dao et al., 2017).

Network-based approaches have been further extended to find genes whose mutations are associated

specifically with given phenotypes rather than finding general cancer drivers (Gilman et al., 2012; Hofree

et al., 2013; Carter et al., 2013; Kim et al., 2016a; Zhang et al., 2018). Although the success of network-based

methods in other cancer domains suggests that such approaches should be also useful in the studies of

drug response, most of the aforementioned network-based approaches focused on identifying mutations

associated with discrete phenotypic traits, e.g., cancer versus healthy, good or bad prognosis, or cancer

subtypes, and, therefore, cannot be directly applied to the analysis of continuous features such as drug

sensitivity.
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There have been several methods proposed for predicting drug response in cancer, including a few

network-based approaches (Emad et al., 2017; Han et al., 2019; Wang et al., 2019; Ali and Aittokallio,

2019; Chen and Zhang, 2020). For example, ProGENI adopts a randomwalk approach on a gene interaction

network to rank genes based on their association with drug response and their expression status, subse-

quently using highly ranked genes for drug response prediction Emad et al. (2017). However, ProGENI

and most of the algorithms cited above focus on response prediction, primarily relying on transcriptomic

information rather than identifying mutational biomarkers associated with drug responses. Computational

methods that make a better use of CNV and point mutation data considering their unique properties are

still in need of development (Ali and Aittokallio, 2019).

Another body of related studies is combining GWAS analysis with network constraints (Li and Li, 2008; Jia

et al., 2011; Azencott et al., 2013; Liu et al., 2017). Although these methods generally perform well at

broadly pointing to disease-related genes, they do not consider complex properties of cancer mutations

such as frequently observed mutual exclusivity of cancer mutations, and are not designed to zoom in on

subnetworks that are specific enough to help understand drug action.

Several algorithms have considered a problem closely related to our work—identifying mutations associ-

ated with drug response—but without including functional relationship information (Kim et al., 2016; Sarto

Basso et al., 2019; Knijnenburg et al., 2016). For example, REVEALER used a re-scaled mutual information

metric to iteratively identify a set of genes associated with a phenotype Kim et al. (2016). UNCOVER em-

ploys an integer linear programming formulation based on the set cover problem, by designing the objec-

tive function to maximize the association with the phenotype and preferentially select mutually exclusive

gene sets Sarto Basso et al. (2019). Although UNCOVER uses a similar objective function as NETPHIX

(NETwork-to-PHenotype assocIation with eXclusivity), it does not utilize network information nor allows

to pick up mixed sensitivity modules (i.e., simultaneously identify genes associated with increased and

decreased drug sensitivity). LOBICO (Knijnenburg et al., 2016; Iorio et al., 2016) is another algorithm de-

signed to identify a set of genes whose alterations are associated with differences in drug response. The

algorithm is formulated as an integer linear program, based on logic models of binary input features

that explain a continuous phenotype variable. However, none of the algorithms mentioned above utilizes

network interaction information. Since perturbations in functionally related genes are likely to lead to

similar phenotypes, functional interaction information can be helpful for the identification of phenotype-

associated genes.

Having the network-centric views inmind, we introduce a computational tool named for identifyingmutated

subnetworks that are associated with a continuous phenotype. Our algorithm builds on combinatorial opti-

mization techniques involving connected set cover to find a connected set of genes associated with

increased or decreased sensitivity. The objective function of NETPHIX allows different options to capture

various properties of cancer mutations: First, both drug-resistant and -sensitive genes can be identified

simultaneously, considering interactions between them. Second, by having an option to impose

penalties for overlapping mutations, the algorithm can preferentially select mutually exclusive genes in

the solution. Based on the observation that cancer-relatedmutations tend to bemutually exclusive (Ciriello

et al., 2013; Kim et al., 2015, 2016b; Vandin et al., 2012; Leiserson et al., 2015; Constantinescu et al., 2015), we

hypothesized that mutual exclusivity may also be useful for the identification of drug sensitivity modules.

We evaluated NETPHIX and other related methods using both simulations and real drug screening data-

sets and showed that NETPHIX outperforms the competing methods. Applying NETPHIX to a large-scale

drug response data (Genomics of Drug Sensitivity in Cancer [GDSC]), we identified sensitivity-associated

subnetworks for many of the drugs, which provided important insights into drug action. We were also

able to validate many of the identified modules with an independent drug screening dataset (The Cancer

Therapeutics Response Portal [CTRP]). Finally, we show that properties of modules associated with drug

can point to potential drug combinations. Effective computational methods to discover genetic alterations

causal to drug sensitivity will improve our understanding of the molecular mechanism of drug sensitivity,

help to identify potential drug combinations, and have a profound impact on genome-driven, personalized

drug therapy.

Besides drug sensitivity profiles, NETPHIX can be applied to other continuous phenotypes. For instance, a

simplified version of our method was used to investigate the genetic aberrations associated with
2 iScience 23, 101619, October 23, 2020
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Figure 1. NETPHIX Method

(A) Overview: NETPHIX takes drug sensitivity profile, alterations status for the same set of samples, and interaction

information among genes as inputs. Using a connected set cover-based ILP algorithm, we first generate a set of candidate

modules. The final set of modules include only maximal modules among statistically significant solutions. Genes

associated with decreased and increased sensitivity are marked as blue and red, respectively.

(B) NETPHIX finds a connected set of genes of which alterations are associated with phenotype values (red colors in the

drug response profile indicate increased sensitivity values and blue colors are for decreased sensitivity values). We

considered the combined model in which all the selected genes are connected and the separate model in which two

subnetworks are identified for increased and decreased sensitivity separately.

(C) The significance of identified modules is assessed using a permutation test by permuting drug sensitivity profiles.

ll
OPEN ACCESS

iScience
Article
mutational signatures, providing novel insights into mutagenic processes that the cancer genomes might

have undergone Kim et al. (2020). Furthermore, the mutual exclusivity condition can be easily removed and

therefore NETPHIX can also be used for the more general problem of linking continuous phenotypes (un-

related to cancer) to genetic alterations.
RESULTS

NETPHIX Method Overview

NETPHIX takes gene alteration information, drug response profiles, and interaction network as inputs and

identifies genetic alterations underlying the phenotype of interest (Figure 1A). In the first phase, we

generate candidate modules solving an optimization problem based on a connected set cover approach

as described in section Connected Set Cover Based Algorithm for Selecting CandidateModules. The prob-

lem is formulated as an integer linear program (ILP), and candidate modules are generated by obtaining

the optimal solutions using CPLEX (https://www.ibm.com/analytics/cplex-optimizer) for ILP instances
iScience 23, 101619, October 23, 2020 3
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with different parameters. In the second phase, the statistical significance of candidatemodules is assessed

with a permutation test, and final sensitivity modules are selected (see sections Selecting Final Modules

and S1.1.4 for details).

Connected Set Cover-Based Algorithm for Selecting Candidate Modules

To obtain candidate subnetworks, we design our algorithm based on connected set cover to maximize the

association with drug response (Figure 1B). Connected set cover approaches have been used successfully

for the identification of cancer driving mutations, to overcome the challenges posed by the heterogeneity

of cancer mutations and to help uncover relevant genes with rare or medium mutation frequencies (Kim

et al., 2013, 2015; Sarto Basso et al., 2019; Kim et al., 2011; Chowdhury and Koyuturk, 2010; Ulitsky et al.,

2010; Hristov and Singh, 2017). Below we describe how the technique can be extended to identify modules

associated with drug response. For the formal definition of the problem, see Section S1.1.1.

NETPHIX takes a gene alterationmatrixA and drug response profilew for a set of patients P (or cell lines) as

inputs. Alteration matrix A is a jV j3jPj binary matrix where Aðv;pÞ= 1 if gene v is altered in patient p and

0 otherwise. w is a vector of length jPj (Figure 1A). In addition, an interaction network G= ðV ;EÞ is given
where V represents genes. NETPHIX then aims to identify a set of connected genes S4V so as to maximize

WðSÞ =
X

p˛PðSÞ
w
�
p
�

(Equation 1)

where PðSÞ is the set of patients who have alterations in any genes in S. In other words, the algorithm tries to

cover drug-sensitive patients with genes having alterations in the patients while maximizing the total

weight of covered patients and enforcing the identified genes to be connected in the network. The con-

nected set cover approach can capture the heterogeneity of cancer mutations as different patients who

are sensitive to a drug may have causal alterations in (or are covered by) different but functionally related

genes.

In addition, the objective function of NETPHIX can include penalties for overlapping mutations in covered

patients to reinforce the property of mutual exclusivity in the selected modules. Based on the observation

that cancer-related mutations tend to be mutually exclusive, we hypothesized that the property may also

be useful for the identification of drug sensitivity modules. To include penalties for overlapping mutations,

we can extend the objective function as follows:

WðSÞ =
X

p˛PðSÞ
w
�
p
��

X

p˛PðSÞ
pt
�
p
��
c
�
p;S

�� 1
�

(Equation 2)

where cðp;SÞ= jfg˛SjAðg;pÞ = 1gj and ptðpÞ is the penalty for overlapping mutations in patient p.

Although it is natural to assume that genes associated with a specific response are likely from a functional

subnetwork, it was not clear what relation should be assumed between modules with association in oppo-

site directions. Therefore, we considered two different connectivity models (Figure 1B) as there can be

genes associated with either direction of drug response—genes whose alterations correlate with increased

sensitivity to the drug (sensitive) and genes whose alterations correlate with decreased sensitivity to the

drug (resistant). NETPHIX finds a module that includes both types of genes simultaneously using two

different models—the combined model and the separate model. In the ‘‘combined’’ model, we identify

one connected subnetwork that includes all genes associated with either direction (decreased or increased

drug sensitivity). In the ‘‘separate’’ model, we seek to identify two subnetworks, one for increased sensitivity

and one for decreased sensitivity separately. This model is designed to capture the case when two different

functional modules affect drug response in different ways.

We create multiple ILP instances for different module sizes (i.e., the number of genes in the module) and

connectivity options and obtain candidate modules by solving the ILP instances optimally with CPLEX. For

the detailed ILP formulation and parameters, see Sections S1.1.2 and S1.1.3.

Selecting Final Modules

Once we obtain the optimal gene module for each parameter combination, the significance of the identi-

fied module is assessed by performing a permutation test (Figure 1C). Note that our algorithm is designed

to identify the modules associated specifically with a given phenotype (e.g., drug sensitivity to each drug)
4 iScience 23, 101619, October 23, 2020



Figure 2. Method Comparison on Simulated Data

F1 score for themodules identified by NETPHIX (red), UNCOVER (blue), ProGENI (green), LOBICO (orange), and SigMOD

(purple).
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rather than finding general cancer drivers. Therefore, a permutation test was performed by permuting the

drug sensitivity profile so that the significance of the association is assessed in comparison with randomly

generated phenotypes. Among all significantly associated subnetworks, we obtain the final drug sensitivity

modules by selectingmaximal modules to remove redundancy. In other words, for any two significant mod-

ulesMi andMj such thatMi3Mj , onlyMj is included in the final solution for the drug. See Section S1.1.4 for

the details of the permutation test and maximal module selection.
Method Evaluation

Evaluation with Simulation Data

We first compared the performance of NETPHIX using simulation data with four other related methods—

LOBICO, UNCOVER, SigMOD, and ProGENI. Of the four algorithms, SigMOD and ProGENI are network-

based algorithms. ProGENI adopts a random walk approach in an interaction network and ranks genes

based on their associations between drug response and gene aberrations Emad et al. (2017). SigMOD is

a recently proposed module identification algorithm combining GWAS and a network-based approach

Liu et al. (2017). SigMOD requires individual association scores of genes to a phenotype as an input, for

which we used the p value of association of each gene to a given phenotype by performing t tests on

the coefficients of univariate linear regression. LOBICO is a logic model-based algorithm, developed to

identify a set of genes whose alterations are related to drug response Knijnenburg et al. (2016). UNCOVER

Sarto Basso et al. (2019) was proposed as a method to identify a set of phenotype-associated genes by tak-

ing a set cover approach similar to ours. Although both LOBICO and UNCOVER find an optimal solution

using an integer linear program, neither algorithms utilize interaction network information.

The simulated instances are generated by randomly generating drug response profiles and planting a con-

nected set of genes so that their alteration patterns are associated with the drug response. We generated

the instances with varying parameters and planted on the background of real cancer cell line mutation data

and the functional interaction network information downloaded from STRING database (https://string-db.

org) (see Section S1.3.1 for the detailed description). Although NETPHIX can identify subnetworks with

mixed associations simultaneously, UNCOVER considers each direction separately. In addition, the logic

models of LOBICO become more complicated and difficult to solve when both sides of associations are

present. Therefore, in order not to disadvantage any of the methods, for the simulation-based evaluation

we considered simple cases where alterations are associated with only one direction (either increased or

decreased). We planted modules of sizes 3, 4, and 5 (the module size refers to the number of genes in

the selected module) and evaluated the accuracy of the five methods in identifying the planted modules

in terms of F1 scores (Figure 2; see Figures S1A and S1B for precision and recall). For all algorithms except

SigMOD and ProGENI, we ran the algorithm for different k0s (k0 is a parameter for the size of a module

searched by the algorithms). Since ProGENI ranks genes instead of selecting modules, we considered

the top k0 genes to be the selected modules. SigMOD automatically adjusts its parameters to find the

best module. Also, for all ILP-based algorithm, we limit the running time up to 24 h, meaning the algorithms

will stop and output the current solution (which may be suboptimal) when the time limit reaches.
iScience 23, 101619, October 23, 2020 5
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As shown in Figure 2, NETPHIX outperforms other algorithms, especially when the algorithms search for

bigger modules than planted. Note that, in real applications, the size of a module is unknown; therefore,

the ability of correctly estimating the size of the module is an important component of a method. Since the

genes should be connected, NETPHIX usually does not extend the best module with spurious genes even if

we search for modules bigger than planted. On the other hand, other algorithms tend to add more genes

when increasing k0. In general, in this basic scenario, the algorithms uncovered the plantedmodules inmost

instances (Figure S1B) as long as the size of searched modules are at least as big as the planted module

sizes, but LOBICO solutions missed true positives more often compared with other algorithms. SigMOD

identified a large number of false positives along with the planted modules (approximately 100–180 genes)

that are not associated with phenotypes.

Evaluation with Real Drug Screening Dataset

We next evaluated the performance of algorithms with real drug screening dataset (GDSC) and further vali-

dated the results on an independent set (CTRP). We included ProGENI and UNCOVER for comparison

since the performance of these methods on simulated data was fairly good.

In the GDSC dataset, the responses for 265 drugs are available for 240–705 cell lines depending on drugs.

For the alteration table, 26,917 gene-level alteration profiles are collected, combining amplification, dele-

tion, and somatic mutations (see Section S1.2 for a detailed description of the data, including criteria used

to identify genomic alterations).

NETPHIX identified a total of 476 modules for 194 drugs (for the remaining drugs no modules with signif-

icant association were identified, Table S1). Since there can be multiple functional modules affecting drug

efficacy, our method allows us to identify multiple associated modules for a specific drug. Of 476 identified

modules, 258modules consist of one connectedmodule based on the combinedmodel (for 163 drugs) and

218 modules consist of two connected components based on the separate model (for 136 drugs).

UNCOVER identifiedmodules for 127 drugs (p value < 0.05) and only thosemodules were tested; 114 drugs

had both NETPHIX and UNCOVER modules identified. ProGENI ranks genes and does not provide signif-

icance scores, and therefore, top ranked genes for all 265 drugs were used for comparison.

We compared the performance in terms of several measures. First, the distances between the modules and

the drug targets were computed to examine the relationship between them. Next, the predictive power of

drug responses for the identified genes were measured using probabilistic concordance index (PCI). In

addition, we computed p values with ANOVA test to examine if the alteration status of the selected genes

is associated with drug response.

Distance to Drug Targets. We first examined the relationship between the identified modules and drug

targets. Specifically, given that we expect a mutated module to be related to the action of a drug, the mod-

ule is likely to be close to the drug target(s) in the network. To test this, we computed the distances between

the drug targets and the genes selected by eachmethod for the corresponding drugs (Figure 3A). In case of

NETPHIX the genes in drug sensitivity modules are located close to the corresponding drug targets in the

network (the mean distances of 2.12, whereas the average distance to targets for randomly selected set of

genes is greater than 2.97; p<10�57, t test). For UNCOVER, the distances are larger than for NETPHIX (the

mean distances of 2.5) but still smaller than random (p<10�11). ProGENI genes have similar statistics as

random genes.

As NETPHIX selects genes associated with both decreased and increased sensitivity, we also examined if

there are differences between the two sets. Interestingly, we observed that the genes associated with

increased sensitivity are closer to drug targets than the genes associated with decreased sensitivity (the

mean distance 1.97 versus 2.37, p<10�13, t test), indicating that the efficacy of a drug improves if it targets

genes that are close to perturbed gene modules. We observed similar patterns in UNCOVER modules

albeit less significant (the mean distance 2.23 versus 2.67, p<10�3).

Predictive Power of Selected Modules Using Regression. Next, we examined the ability of predicting

drug responses for the modules identified by different algorithms. To this purpose, we performed random

forest (RF) regression using the selected genes as features. As NETPHIX selects multiple modules for some

drugs, we merged all modules significantly associated with the response for each drug and used all
6 iScience 23, 101619, October 23, 2020
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Figure 3. Evaluation Results and Modules Identified with Real Drug Screening Dataset

(A–B) Evaluation with drug screening dataset. (A) Average distances of selected genes to drug targets. Distances for genes associated with increased

sensitivity, decreased sensitivity, all genes in the selected modules are shown for NETPHIX and UNCOVER. The distances with 5 and 20 top ranked genes for

ProGENI and randomly selected genes are also shown. (B) Predictive power of the modules selected by NETPHIX, UNCOVER, and ProGENI. PCI scores with

random forest regression tested within GDSC and with CTRP dataset are shown.

(C–F) Sensitivity networks identified by NETPHIX. Alternation profile and connectivity between the drug target and the genes for Selumetinib (C, D) and

Afatinib (E, F). In the alteration profile, the panel shows the values of the phenotype (i.e., drug response, top row) for all samples (columns), with blue being

decreased sensitivity values and red being increased sensitivity values. For each gene, alteration status in each sample is shown in red/blue (with the

summary covers for decreased and increased sensitivity separately), whereas samples not altered are shown in gray. Themodule for Selumetinib is identified

based on the separate connectivity model, and the module for Afatinib is selected based on the combined connectivity model.

(G) Schematic diagram of MAPK/ERK and AKT signaling pathways with drugs and their drug targets annotated.
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selected genes as features for RF regression. The Boolean indicators of mutation status were used as

feature values. The number of features for each drug varies between 3 and 15 in total. UNCOVER finds

at most one significant module for decreased and increased sensitivity, respectively, and we used genes

in both directions as features (total of 3–6 genes). For ProGENI, we used 20 top ranked genes as features

for regression. We first performed a nested cross-validation on GDSC dataset by learning the best model

with training set and testing with the remaining set of cell lines within GDSC (see Section S1.3.2 for details).

In the second set of evaluation, we learned hyperparameters from GDSC dataset and applied the best

model to an independent dataset (CTRP) and examined the predictive power. As shown in Figure 3B,

the predictive power of NETPHIX outperformed other algorithms in both measurements, although

UNCOVER had comparable prediction results for CTRP.

Predictive Power of Selected Modules Using ANOVA Test. For another way to examine if the alter-

ations in the identified modules indeed lead to specific responses for the corresponding drugs, we divided
iScience 23, 101619, October 23, 2020 7
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cell lines into different groups depending on their alteration status and tested if the groups have statisti-

cally significant difference in drug responses using ANOVA.

Specifically, for each module identified using GDSC dataset for a given drug, we tested the predictive po-

wer of the module with CTRP dataset. We grouped the cell lines into three groups: (1) cell lines with alter-

ations in decreased sensitivity genes only, (2) cell lines with increased sensitivity genes only, and (3) cell lines

with no alterations in any of the selected genes. Subsequent ANOVA tests evaluated the statistical signif-

icance of differences in drug response among three groups of cell lines (see Section S1.3.2 for details).

Since the test requires selected modules and their mutation status associated with either direction of sensi-

tivity, we examined this measure only for NETPHIX and UNCOVER. ProGENI only ranks genes instead of

identifying modules, and the directions of association (increased or decreased) are not specified.

For NETPHIX, 164 modules for 65 drugs were tested for the response with CTRP dataset (many drugs have

multiple associatedmodules). We found that 102 modules have a statistically significant difference (p< 0:05

[ANOVA], FDR <9% [BH]) and 45 drugs have at least one significant module. On the other hand, only 29 of

44 UNCOVER modules had significant difference in the response (UNCOVER identifies at most one

increased and decreased module, respectively, for a drug). In summary, the results confirm that NETPHIX

can identify more gene modules that are predictive of drug responses.

Impact of NETPHIX Design Choices on the Results

Although the benefits of using protein interaction network for the identification of cancer drivers are gener-

ally accepted, it was not well investigated before howmuch gain the network usage provides in the context

of drug responses. Here we use ANOVA tests to compare the performance of our algorithm with and

without network information. Similarly, we also investigated the impact of using penalty that reinforces

mutual exclusivity and different connectivity models by measuring the difference in performance in terms

of the number of instances validated with ANOVA test as described in the previous section.

Network Information Helps Identify Drug Sensitivity Modules

NETPHIX finds a set of connected genes that are associated with drug response. To investigate the effects

of using network connectivity on the performance, we ran the algorithm without connectivity constraints

and compared the solutions with NETPHIX modules.

NETPHIX finds more significant modules when network information is used (476 modules compared with

274 modules without network). The number of drugs with at least one associated module is also larger

(194 drugs with network versus 175 drugs without network). As shown in Figure S2A, without network

only 57 of 88 tested modules were confirmed, whereas 102 of 164 tested modules were confirmed when

connectivity was imposed. In addition, only 40 drugs had at least one confirmed module without network

compared with 45 drugs with network. Overall, the results show that network information helps find more

modules that are predictive of drug sensitivity.

Imposing penalty on overlapping mutations may improve drug sensitivity module identification.

Our objective function in ILP has an option to include penalties to further penalize overlapping mutations

and enforce mutual exclusivity between mutations. We investigated the effects of using penalties on the

performance by running the algorithm without penalties in the objective function and compared with

our results obtained when penalties are used (Figure S2B). We observe that NETPHIX finds a lesser number

of significant modules when penalties are not included (460 modules compared with 476 modules in the

original solution), although the numbers of drugs with at least one associated modules are similar (192

drugs without penalty versus 194 drugs with penalty). In terms of the number of drugs/modules confirmed

in CTRP dataset with ANOVA, 88 modules of 152 tested modules were confirmed without penalty, whereas

102 modules of 164 tested modules were confirmed with penalty. In addition, 41 drugs had at least one

confirmed module without penalty compared with 45 drugs with penalty.

Combined versus Separate Connectivity Model

Next, we compared the performance of two connectivity models, the combined model where all selected

genes are connected and the separate model in which two modules are identified for increased and

decreased sensitivity separately (Figure S2C). It was not immediately obvious which approach would be
8 iScience 23, 101619, October 23, 2020
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more successful. On the one hand, one can hypothesize that genes responsible for either type of response

are functionally related. However, it was also possible that mutations associated with drug resistance may

occur in a separate module such as genes related to drug metabolism. A drug may have multiple drug tar-

gets, which may lead to separate modules.

We found that a similar number of modules were identified with the combined model and the separate

model (286 versus 278 modules) for 177 versus 170 drugs. However, the combined connectivity model

has a slightly higher percentage of confirmed modules/drugs. Ninety-eight modules were tested with

CTRP dataset for both combined and separate models, and 65 and 61 modules were confirmed, respec-

tively. In terms of the number of drugs with at least one confirmed module, the combined model has 37

of 57 drugs confirmed, whereas the separate model has the same number of drugs confirmed out of 59.

Network Properties of NETPHIX Modules

NETPHIX is designed to choose modules in which genes are highly connected, which helps identify drug

sensitivity modules as discussed above. The selected modules are relatively small (the average size of 3.86)

and densely connected (the average edge density of 0.55). Since NETPHIX modules are densely con-

nected, the genes in the selected modules are naturally close in terms of distance in the network (the

mean of average distances = 1:78, Figure S2D). The proximity in the network means that the genes are

more likely to be functionally related. In addition, the genes with the same direction of association

(decreased or increased) tend to be closer to each other than the genes associated in opposite direction,

although the two groups of genes are still close in the network (the mean of average distances between the

two groups = 1:96).
Case Studies: NETPHIX Identifies Mutated Subnetworks Associated with Drug Responses

Many of the modules identified by NETPHIX are putative drug biomarkers supported by previous studies

and provide interesting further insights related to drug action. We analyzed the identified modules asso-

ciated with a few drugs in more detail.

Drugs Targeting RAS/MAPK Pathways

RAS/MAPK pathway regulates growth, proliferation, and apoptosis and is often dysregulated in various

cancers (Figure 3G). Among the most common mutations of this pathway are mutations of BRAF/KRAS/

NRAS. Interestingly, all modules associated with increased sensitivity to MEK inhibitors (Selumetinib,

Trametinib, CI-1040, PD0325901, Refametinib) and an ERK inhibitor (VX-11e) included BRAF and KRAS mu-

tations. NRAS mutations were included in 12 of 20 such modules. All these six drugs act by blocking MEK1/

MEK2 or ERK genes that are immediately downstream of BRAF/KRAS/NRAS and the increased sensitivity

attributed to the alterations in this subnetwork is consistent with the action of these drugs. Modules asso-

ciated with decreased sensitivity to the drugs are more diverse but NETPHIX frequently selected the mod-

ule of ERBB2 amplification, MYC and RB1 mutations (four times) or the module with TP53 mutations (eight

times). All the genes in themodules are related to theMAPK/ERK signaling pathway. Themutation status of

BRAF and KRAS, the core members of the pathway, was previously identified as predictors of MEK inhib-

itors, although KRAS mutations can affect drug responses differently depending on the mutation types

(Nakayama et al., 2008; Li et al., 2018; Sun et al., 2014). ERBB2 is a receptor protein that signals through

this pathway, whereas MYC, RB1, and TP53 are downstream of the MAPK/ERK signaling pathway. RB1

was found to be associated to the resistance to MEK inhibitors Gong et al. (2019) and MYC degradation

by inhibition of MEK leads to an increase in both ERBB2 and ERBB3 mRNA expression, causing intrinsic

drug resistance Sun et al. (2014). TP53 mutations are associated with multiple drug resistance (Keshelava

et al., 2001; Najem et al., 2017). These findings indicate that the alterations in different components of

the same pathway can contribute to drug sensitivity in different ways.

In contrast to the response to MEK1/2 and ERK2 inhibitors, the drugs directly targeting BRAF are associ-

ated with more heterogeneousmodules. Although all BRAF inhibitors (except HG6-64-1) commonly exhibit

increased sensitivity in BRAF mutant cell lines, KRAS mutations help the action of type II BRAF inhibitors

(AZ628) but develop resistance to type I inhibitors such as Dabrafenib, PLX-4720, and SB590885, which is

consistent with the previous findings Sanchez-Laorden et al. (2014). This suggests that patient-specific

mutational profiles can provide important clues in predicting drug response.
iScience 23, 101619, October 23, 2020 9
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Drugs Targeting Histone Deacetylases

Histone deacetylase (HDAC) inhibitors are cytotoxic drugs, used to destroy cancer cells by inhibiting cell

division and causing cell death. HDAC is frequently dysregulated in cancer, and although HDAC inhibitors,

targeting HDAC proteins, have a wide range of effects including cell-cycle arrest and apoptosis, the mech-

anisms of drug action are still uncertain. NETPHIX identified several modules associated with HDAC inhib-

itor sensitivity. For example, Vorinostat is a pan-HDAC inhibitor and inhibits class I and class II HDAC

enzymes. NETPHIX found that the drug response to Vorinostat is associated with CREBBP mutation for

increased sensitivity and SMAD4 deletion and DACH1 mutation for decreased sensitivity (Figure S3A).

Several studies found that cell lines with CREBBP mutations are sensitive to Vorinostat treatment (Mul-

lighan et al., 2011; Andersen et al., 2012). SMAD4 inactivation is implicated in tumor malignancy and resis-

tance to multiple drugs (Papageorgis et al., 2011; Chen et al., 2014).

On other hand, Belinostat and CUDC-101 are found to be associated with CDKN2D deletion (decreased

sensitivity), whereas TP53 deletion and MAPK7, MYC mutations are associated with increased sensitivity

of the drug. Consistent with our findings, studies found that HDACis were preferentially cytotoxic to cells

with mutant TP53 (Blagosklonny et al., 2005) but CDKN2A deletion is linked to poor effectiveness in com-

bination therapy of HDACi with another agent (Chen et al., 2010).

Drug resistance is often observed for HDAC inhibitors, and combined treatments of HDACi with other anti-

cancer drugs have demonstrated promising effects in clinical studies (Suraweera et al., 2018). As discussed

below, based on NETPHIX modules we identified multiple candidates of combination therapy with HDACi

that are also supported by previous evidences.
NETPHIX Modules Suggest Candidates for Drug Combination Therapy

We hypothesize that pairs of drugs can potentially have synergistic effects if they are associated with similar

modules but the genes in the modules are associated with opposite directions of drug responses. By

analyzing the modules for pairs of drugs with such property, we identified 153 drug pairs (Table S3).

Although the systematic validation could not be performed owing to the lack of validation dataset, we

found evidences in the literature for the efficacy of many predicted drug combinations. In Figure 4, we

show examples of the identified combination candidates of drugs for which we found supporting evidences

from the literature. The drugs are categorized by the target pathways. For example, Afatinib, a receptor

tyrosine kinase inhibitor, has associated modules of KRAS, NRAS (mutations) for decreased sensitivity

and EGFR, ERBB2 (amplification), and ARAF (deletion) for increased sensitivity. This suggests that it might

be beneficial to use Afatinib in combination with MEK 1/2 and ERK2 targeting drugs discussed above (Fig-

ures 3C–3F). Indeed, studies showed that Afatinib and Selumetinib work synergistically (Sun et al., 2014)

and clinical trials for combination therapy are currently underway (https://clinicaltrials.gov/ct2/show/

NCT02450656). In addition to Selumetinib, other MEK inhibitors, such as Refametinib and PD0325901,

have associated modules similar to Afatinib but in opposite direction, and the efficacy of PD0325901

and Afatinib combination is also reported (Lin et al., 2019). Indeed, drugs targeting the same molecules

are typically predicted to have similar drug combination partners (Figure 4).

HDAC inhibitors are found to improve drug efficacy when combined with other anti-cancer drugs (Fig-

ure 4D). An example is the combination of Vorinostat and Lapatinib (Figure S3A and S3B). Lapatinib is a

drug that inhibits EGFR/ERBB2, and Vorinostat is a histone deacetylase (HDAC) inhibitor. Lapatinib in gen-

eral enhances the antitumor activity of the histone deacetylase inhibitor synergistically (LaBonte et al.,

2011). Vorinostat has been shown to improve how well Lapatinib kills cancer cells in clinical trials

(https://clinicaltrials.gov/ct2/show/NCT01118975) and can also improve the therapeutic efficacy of other

RTK inhibitors such as Erlotinib (Leone et al., 2015).
DISCUSSION

We developed a new computational method, NETPHIX (NETwork-to-PHenotype assocIation with eXclusiv-

ity), for the identification of mutated subnetworks that are associated with a continuous phenotype. Using

simulations and analyzing large-scale drug screening datasets, we showed that NETPHIX can uncover the

subnetworks associated with response to cancer drugs. We found many statistically significant and biolog-

ically relevant modules associated with drug response, including MAPK/ERK signaling-related modules

associated with opposite response to drugs targeting RAF, MEK, and ERK genes. The genetic alteration
10 iScience 23, 101619, October 23, 2020
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Figure 4. Examples of Predicted Drug Combinations Supported by Independent Evidence

The candidate drug pairs (connected by red lines) that are identified based on NETPHIX modules and supported by the

literature survey are shown.

(A–D) The panels are organized by different drug target pathways: (A) RTK inhibitors (inside blue boxes); (B) MEK/RAF

inhibitors (turquoise boxes); (C) AKT/MDM2 inhibitors (magenta boxes); (D) HDAC inhibitors (orange boxes). The name of

each drug is displayed next to its target protein, and their predicted combination partners are connected by red lines.

Drugs with the same interaction partners are connected by brackets. The genes/nodes are color coded as follows: orange

(DNA processing), magenta (PIK/AKT/mTOR pathway), turquoise (MAPK pathway), green (cell cycle), blue half-moons

(Receptors Tyrosine Kinases), dark green (BRT is a non-receptor Tyrosine Kinase).
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status in many of the identified modules indeed make differences in cell survival rates, as validated with an

independent dataset. Overall, the modules identified by NETPHIX are in good correspondence with the

action of the respective drugs, suggesting that NETPHIX can correctly identify relevant modules and the

modules can thus be used to predict potential patient-specific drug combinations and to provide guidance

to personalized treatment.

The mutual exclusivity property has been shown to be helpful for identifying cancer drivers, but the hypoth-

esis that the property can also help define mutated subnetworks associated with drug response was not

well investigated before. We demonstrate that the preferential selection of mutually exclusive genes can

improve the performance of the method, although the improvement is moderate. We note that the set

cover approach itself might favor the genes that are mutually exclusive to maximize the coverage with

the smallest number of genes. We hypothesize that the improvement is related to the fact that mutual ex-

clusivity increases the probability that selected genes are cancer related. However, further studies may be

necessary regarding the relationship between mutually exclusive mutations and drug sensitivity. By

removing the mutual exclusivity condition, NETPHIX can also be used for the more general problem of link-

ing continuous phenotypes (not specific to cancer) with genetic alterations.
iScience 23, 101619, October 23, 2020 11
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Interestingly, although onemight assume that genes affecting drug resistance are not necessarily function-

ally related to the genes increasing drug sensitivity, we found that the combined connectivity model slightly

outperforms the separate connectivity model, indicating that the two groups of genes in fact might be

related. We also found that, even for the separate model, the sensitivity modules are relatively close to

each other (Figure S2D), which suggests that the genes whose alterations are associated with the same

drug response may belong to the same or related pathways.

Although the combined connectivity model works better in terms of the number of significant and validated

modules, there are a few drugs for which the separate model provides different insights on drug action. For

example, for Cytarabine, both the combined and the separate model identified statistically significant

modules, which are also confirmed in CTRP dataset. In particular, the module associated with Cytarabine

in the separate model (Figure S3C) includes UGT2B17 and CYP2E1 deletion associated with decreased

sensitivity. Both enzymes are hypothesized to be important players in the metabolism of common drugs

(Guillemette et al., 2014; Garcia-Suastegui et al., 2017). Since drug metabolism pathways are typically

not part of cell growth-related cancer-driving pathways, the separate connectivity approach can provide

insights that the combined model cannot provide in such cases.

The applicability of NETPHIX can go far beyond the drug response discussed in this paper, to any contin-

uous cancer phenotypes. A simplified version of our method was used to investigate the genetic aberra-

tions associated with mutational signatures, by which the mutagenic processes underlying the cancer

genomes were elucidated (Kim et al., 2020). In that case, the phenotype of interest was the strength of a

mutagenic process as measured by the mutation counts of the corresponding mutational signature. We

expect that NETPHIX will find broad applications in many other types of network-to-phenotype association

studies, especially in the context of cancer.

Limitations of the Study

NETPHIX is focused on the identification of mutated subnetworks associated with drug response. Such

mutated modules might not always exist as, for example, some drugs are designed to reduce expression

of overexpressed genes. In addition, there is no guarantee that the association identified by NETPHIX is

causal, although the proximity of identified subnetworks to the drug targets suggests that causal relations

are quite likely. Finally, in case of systematic co-occurrence of alterations (for example, when two genes are

co-amplified) NETPHIX might report only one of these genes owing to the nature of set cover-based

algorithms.

Resource Availability

Lead Contact

Further information and requests for resources and information should be directed to and will be fulfilled by

the Lead Contact, Teresa M. Przytycka (przytyck@ncbi.nlm.nih.gov).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

The source code and the datasets used for and generated during this study are available at https://www.

ncbi.nlm.nih.gov/CBBresearch/Przytycka/index.cgi#netphix.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101619.
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Figure S1: Method comparison on simulated data (Related to Figure 2). (a) Precision and (b) Recall for the modules
identified by NETPHIX (red), UNCOVER (blue), ProGENI (green), LOBICO (orange), and SigMOD (purple).
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Figure S2: Impact of design choices on the performance of the algorithm (Related to Figure 3) (a) Com-
parison between runs with and without network information. The number of tested modules/drugs with CTRP
(tested) and the number of confirmed modules (validated) with ANOVA test (p < 0.05) are shown. Drugs are
counted when there is at least one associated modules that are validated (b) Comparison between runs with and
without penalty promoting mutual exclusivity (c) Comparison between the combined and separate connectivity
models. (d) Average distances between genes in the selected modules. Distances for genes associated with in-
creased sensitivity, decreased sensitivity, all sensitivity, and between decreased and increased sensitivity genes
are shown.
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Figure S3: Modules identified by NETPHIX (Related to Figure 3). (a-b) Sensitivity module for Vorinostat
(a) and Lapatinib (b). The two modules associated with the drugs are similar but they are associated with
opposite directions. The efficacy of combination therapy with Lapatinib and Vorinostat is confirmed in clinical
trials. (c) Sensitivity module for Cytarabine identified based on the separate connectivity model.
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Figure S4: The average running times of NETPHIX over different k’s (Related to Section S1.1.3)



S1 Transparent Methods

S1.1 NETPHIX method

S1.1.1 Formal definition of the computational problem for NETPHIX

We are given a graph G = (V,E), with vertices V = {1, . . . , n} representing genes and edges E

representing interactions among genes. Let P denote the set of m patients (or cell lines). For each

sample j ∈ P , we are also given a phenotype profile value wj ∈ R which quantitatively measures a

phenotype (e.g., drug response in our study). Let Pi ⊆ P be the set of patients in which gene i ∈ V

is altered. We say that a patient j ∈ P is covered by gene i ∈ V if j ∈ Pi i.e. if gene i is altered in

sample j. We say that a sample j ∈ P is covered by a subset of genes (or vertices) S ⊆ V , if there

exists at least one vertex v in S such that j ∈ Pv.

For simplicity of description, we start with the formulation in the case where the association is

in one direction, for example, with increased drug sensitivity. Later we will show how to extend the

problem to accommodate the case where mixed associations are allowed in the same module. Our

goal is to identify a connected subgraph S of G of at most k vertices such that the sum of the weights

of the samples covered by S is maximized. The weights are computed based on drug sensitivity. To

identify functionally complementary mutations, we can penalize coverage overlap when a sample is

covered more than once by S by assigning a penalty pj for each of the additional times sample j is

covered by S. Let cS(j) be the number of times element j ∈ P is covered by S. For a set S of genes,

we define its weight W (S) as:

W (S) =
∑

j∈∪s∈SPs

wj −
∑

j∈∪s∈SPs

(cS(j)− 1)pj (1)

Thus, we define the optimization problem for one-side association as follows: Given a graph G

defined on a set of n vertices V , a set P , a family of subsets P = {P1, . . . , Pn} where for each i,

Pi ⊆ P is associated with i ∈ V , weights wj and penalties pj ≥ 0 for each sample j ∈ P , find the

subset S ⊆ V of ≤ k connected vertices maximizing W (S).

Since genetic alterations may affect the increase or decrease of drug sensitivity, we extend the



problem to identify genes with associations in both directions in one module. Considering genes with

increased and decreased sensitivity simultaneously can pick up stronger signals of associations and

allow to take into account the interactions between alterations affecting drug responses in different

ways. Let I include the genes associated with increased sensitivity overall (i.e., genes i with positive

total weights,
∑

j∈Pi
wj ≥ 0) and D is the set of genes associated with decreased sensitivity overall

(i.e., genes i with negative total weights,
∑

j∈Pi
wj < 0). Our objective function is then defined as

follows:

W (S) =
∑

j∈∪s∈S
⋂

IPs

wI
j−

∑
j∈∪s∈S

⋂
IPs

(cS⋂
I(j)−1)pIj+(

∑
j∈∪s∈S

⋂
DPs

wD
j −

∑
j∈∪s∈S

⋂
DPs

(cS⋂
D(j)−1)pDj )

(2)

where we define wI
j = wj and wD

j = −wj . We considered two versions of connectivity constraints

among the associated genes as illustrated in Figure 1b. In the first model, we insisted that all selected

genes should be connected whether they are associated with increased or decreased sensitivity. In the

second model, we ensured the connectivity of genes with the same direction of association, resulting

in two connected components in a solution (one for increased and the other for decreased sensitivity).

Although the problem is NP-hard (by a reduction to set cover) even for the simple one-sided case

without network constraints, we formulated it as an integer linear program as described in the next

subsection, which can be solved using a optimization software package such as CPLEX.

S1.1.2 ILP formulation of NETPHIX

Let xi be a binary variable (denoted with xi ∈ B) equal to 1 if gene i ∈ V is selected and xi = 0

otherwise. Let zIj ( resp., zDj ) be a binary variable equal to 1 if sample j is covered by a gene i ∈ I

(resp., i ∈ D) and 0 otherwise. Let yIj (resp., y
D
j ) denote the number of genes in I (resp., D) cover

sample j in the solution. Finally, let wj be the weight of sample j and pj be the penalty for sample j.

When sample j is covered by a gene in I , the weight and penalty remain the same wI
j = wj . When

j is covered by a gene in D, wD
j = −wj . Our ILP formulation for the combined model is defined as

follows:



z(q) = max
∑
j

(wI
j + pIj )z

I
j −

∑
j

pIjy
I
j +

∑
j

(wD
j + pDj )z

D
j −

∑
j

pDj y
D
j (3)

s.t.
∑
i

xi ≤ k, (4)

yIj =
∑

i:j∈Pi,i∈I

xi, ∀j (5)

yDj =
∑

i:j∈Pi,i∈D

xi, ∀j (6)

yIj ≥ zIj , ∀j (7)

yDj ≥ zDj , ∀j (8)

zIj ≥ yIj /k, ∀j (9)

zDj ≥ yDj /k, ∀j (10)

xi, zj ∈ B, yj ∈ D ∀i, j (11)∑
l:il∈E

xl ≥ C(k − 1)(xi − 1) + C

(∑
l∈V

xl − 1

)
∀i ∈ V (12)

Constraint (4) impose that the total number of sets (i.e., selected genes) in the solution is at most

k. Constraints (5) and (6) define how many times each sample has been covered by genes in I and D,

respectively. Constraints (7) (resp., Constraints (8)) ensure that for each sample j ∈ P , if j is covered

by increased (resp., decreased) sensitivity genes in the current solution then the number of times j is

covered by I (resp., D) in the solution is at least 1. Constraints (9) (resp., Constraints (10)) impose

that for each element (sample) j ∈ P , if j is covered by at least one increased (resp., decreased)

sensitivity gene in the current solution then j is covered by I (resp., D).

Constraints (12) were used to ensure the high connectivity of a selected module (the combined

connectivity model). Specifically, the constraints enforce that each selected gene is connected with at

least C fraction of genes in the selected module (other than the gene itself). Note that if C ≥ 0.5, the

module is a connected subgraph since for any two non-adjacent vertices, they must have a common

neighbor (C = 0.5 is used in our analysis). In our study, we used a functional interaction network



(from STRING database), which is relatively dense. For sparse networks where highly connected

components are rare, we may use an alternative approach based on a branch-and-cut algorithm to

ensure the connectivity [Fischetti et al., 2017, Bomersbach et al., 2016, Wang et al., 2017].

Note that Constraints (12) forces the connectivity among all selected genes regardless of the di-

rections of association. For the separate connectivity model, we identify candidate modules so that

the connectivity is only enforced among the genes in I and D, separately. In this case, we replace the

connectivity constraints given in (12) with the following constraints.

∑
l:il∈E,l∈I

xl ≥ C(k − 1)(xi − 1) + C

(∑
l∈I

xl − 1

)
∀i ∈ I (13)

∑
l:il∈E,l∈D

xl ≥ C(k − 1)(xi − 1) + C

(∑
l∈D

xl − 1

)
∀i ∈ D (14)

S1.1.3 Parameters

To obtain a pool of candidate modules for each drug, we generated ILP instances with different sizes k

(k = 1 to 5) and two connectivity options (the combined and separate model). The objective function

can include a penalty to reinforce mutual exclusivity. As for the penalty for increased sensitivity pIj ,

we use the average of the positive phenotype values if the original value of the element was positive

(wj > 0) and assign a penalty equal to its absolute value otherwise. The penalty for decreased

sensitivity pDj is computed in the opposite way. The negative of the average of the negative phenotype

values is used if the original value of the element was negative (wj < 0) and assign a penalty equal to

its absolute value otherwise. The penalties are set to be zero when no penalty is imposed.

We solved the ILP instances to optimality using CPLEX, which can be run in a reasonable amount

of time (See Figure S4 for running times for the simulation instances with different k’s). For the

instances requiring a large amount of resources solving ILP, we set the time limit of 24h and the

memory space limit of 10 GB.



S1.1.4 Selecting final modules

For each candidate module, we run a permutation test to assess the statistical significance of associa-

tion and select maximal modules among significantly associated ones. Note that we allow to choose

multiple modules associated with a drug in the final solution because it is possible that multiple func-

tional components are associated with drug response.

Permutation test: For each candidate module, we assess the statistical significance of the asso-

ciation between their alteration profile and drug response by a phenotype permutation test. In the

phenotype permutation, the dependencies among alterations in genes are maintained, while the asso-

ciation between alterations and the phenotype is removed. Specifically, a permuted dataset under the

null distribution is obtained as follows: the graph G = (V,E) and the sets Pi, i ∈ V are the same as

observed in the data; the values of the phenotype are randomly permuted across the samples (Figure

1c). Once we find the optimal solution for the original instance, we can run ILP as a feasibility test

simply checking if a permuted instance has a solution with the objective value that is greater than or

equal to the optimal.

To estimate the p-value for the solutions obtained by ILP, we used the following standard proce-

dure: 1) we run an algorithm on the real dataD, obtaining a solution with objective function oD; 2) we

generate N permuted datasets as described above; 3) we run a feasibility test by simply checking if a

permuted instance has a solution with the objective value greater than or equal to oD; 4) the p-value

is then given by (e+ 1)/(N + 1), where e is the number of permuted datasets in which our algorithm

found a solution with objective function ≥ oD. We used N = 100 permutations in our analysis and

let pbest is the most significant p-value for the drug among different parameters. We only considered

modules with p-value = pbest . If pbest < 0.05 (FDR < 10%, BH), we considered those modules as

significantly associated modules.

Selecting maximal modules: Among all significantly associated modules obtained based on the

permutation test, we remove redundant modules by selecting only maximal modules. In other words,

let M1,M2, ...,Mt be the set of significantly associated modules for a drug. For any two modules Mi

and Mj such that Mi ⊂Mj , we only include Mj in the final solution for the drug. Therefore, for two



overlapping modules, when one is not a proper subset of the other, both modules may be included.

S1.2 Datasets

Drug sensitivity dataset: The Genomics of Drug Sensitivity in Cancer Project (https://www.

cancerrxgene.org/) consists of drug sensitivity data generated from high-throughput screen-

ing using fluorescence-based cell viability assays following 72 hours of drug treatment. In particu-

lar, we considered the area under the curve for each experiment as a phenotype. These scores are

provided in the file portal-GDSC AUC-201806-21.txt available through the DepMap data

portal (https://depmap.org) for 265 compounds and 743 cell lines, with 736 having alter-

ation data available through the DepMap portal. For the DepMap experiments [Stransky et al., 2015,

Barretina et al., 2012], we used the alteration provided at https://depmap.org/portal/download/

all/. We downloaded the data on July 6th 2018. In particular we used mutation data from the file

portal-mutation-201806-21.csv that includes binary entries for 18,652 gene-level muta-

tions. Additionally, we considered 22,746 amplifications and 22,746 deletions computed from the

gene copy number data in portal-copy number relative-2018-06-21.csv, with an am-

plification defined by a copy number above 2 and a deletion defined by a copy number below -1.

Removing genes not present in the interaction network (see below for the details of interaction net-

work data), we collected 26,917 gene-level alteration profiles (combining amplification, deletion and

mutation).

We also utilized an independent drug response dataset from the Cancer Therapeutics Response

Portal (CTRP) for validation [Seashore-Ludlow et al., 2015]. The drug screening results were down-

loaded from https://portals.broadinstitute.org/ctrp/(Version 2). The area un-

der the curve (AUC) values in v20.data.curves post qc.txt were used for drug response

phenotypes (from CTRPv2.0 2015 ctd2 ExpandedDataset.zip file downloaded on August

2nd, 2019).

Preprocessing drug sensitivity data: For every drug response profile, we excluded samples with

missing values for that phenotype, which results in a different number of samples for each pheno-

type. The number of samples varied between 240 and 705. To generate drug sensitivity values for



the patients, we took the negatives of cell viability (i.e., increased cell survival indicates decreased

sensitivity to the drug and vice versa) and then normalized the phenotype values before running the

algorithm, by using standard z-scores (subtracting the average value
∑

j∈J wj/m from each weightwj

and dividing the result by the standard deviation of the (original) wj’s), in order to have both positive

and negative phenotype values. We excluded genes with low mutation frequency (present in less than

1% samples) from our analyses.

Interaction network: For functional interactions among genes, we used the data downloaded from

STRING database version 10.0 (https://string-db.org). The data integrates multiple types

of interactions including physical interactions. We only included the edges with high confidence

scores (≥ 900 out of 1000) as an input to NETPHIX. The resulting interaction network includes

9,215 nodes and 160,249 edges.

S1.3 Evaluation Details

S1.3.1 Running simulated experiments

For the background of simulation data, we use the same gene alteration table and interactions from

drug sensitivity dataset described previously in Section S1.2. The phenotype values for individual

samples are randomly drawn from normal distribution N(0, 1). We then planted randomly generated

phenotypes and associated modules to the background as follows.

Phenotypes: α fraction of patients P (α) (α = 0.1, 0.2, and 0.3) were randomly selected and

assigned phenotype values drawn randomly from N(z, 0.5) where z is a z-score corresponding to a

cumulative p-value p (p = 0.005, 0.1, 0.99, and 0.995).

Associated gene modules: we randomly selected a gene set S(k) of size k (k = 3, 4, and 5) and

added random alterations in S(k) for patients P (α) so that each patient in P (α) has an alteration in

exactly one gene in S(k). Therefore, the added alterations among the patients P (α) are mutually

exclusive although there may be overlapping mutations due to the background alterations. We also

added random edges among the genes S(k) so that they satisfy the density constraints (C = 0.5)

We generated 10 random instances for each combination of parameters (k, α, z) and ran the

module identification algorithms.



For LOBICO [Knijnenburg et al., 2016], we used its R implementation (https://github.

com/clareli9/rlobico,release 2018/7/27) with the default parameter settings, except the logic

function parameters (K and M ) and the maximum running time. The OR logic model with K = k

and M = 1 was used for increased sensitivity modules and the AND logic module with K = 1 and

M = k for decreased sensitivity modules, where k is the size of the searched module. We limited

the running time of ILP instances to be 24h and reported the best current solution (which may be

suboptimal) when the program stops.

For ProGENI, we downloaded the program from github (https://github.com/KnowEnG/

ProGENI, release 2017/7/12). ProGENI originally utilized gene expression information for drug

prediction but for comparison with NETPHIX, we used gene alteration profiles instead. The profiles

for genes are computed by summing over mutation, deletion and amplification for each gene. There-

fore, each entry in the matrix can have a value between 0 and 2 as deletions and amplifications cannot

co-occur. We ran a robust version of ProGENI, in which gene prioritization is performed on randomly

selected 80% of samples 50 times repeatedly and the resulting ranked lists are aggregated to produce

the final ranking of genes.

S1.3.2 Method comparison with real drug screening dataset.

Identifying modules using different methods. UNCOVER modules are obtained by setting k = 3

(module size) as presented in [Sarto Basso et al., 2019] and for decreased and increased sensitivity

separately. The significance of each module is assessed using permutation tests (using 100 permuted

instances), and we consider the modules with p < 0.05 as significant modules and used for further

analysis. The rankings of genes in ProGENI are computed by performing RobustProGENI with boot-

strap sampling rate of 95% and 100 runs.

Computing distance information. To compute the distances from drug targets to the selected mod-

ules by the algorithms, we used the drug target information given in Table S1. For each drug, we only

used the drug targets present in the functional network that are reachable from the selected modules

and computed the average distance for all pairs of genes. The identified modules are used for NET-

PHIX and UNCOVER while 5 and 20 top-ranked genes are used for ProGENI. We also included 5



and 20 randomly selected genes for control.

For NETPHIX modules, we also computed the average distances within modules. The distances

are computed by computing the pairwise shortest distances within modules and take the average

distances.

Response prediction using random forest regression. We ran RandomForestRegressor in scikit-

learn package to learn and test the models. First, we ran 3-fold nested cross validation with GDSC

dataset for each drug. For each of training sets, the best model is learned based on 3-fold cross vali-

dations inside the training set, with the best parameters estimated using GridsearchCV with combina-

tions of parameters (n estimators = (10, 100), max depth = (None, 10, 100), and min samples split =

(1, 2, 3)). To measure the performance, we used probabilistic concordance index (PCI) defined as in

[Costello et al., 2014, Cokelaer et al., 2015, Emad et al., 2017]. The PCI metric compares the ranks

of the predicted values and actual AUC scores to compute the prediction power.

For NETPHIX, we merged all modules significantly associated with the response for each drug

and used them as features for regression. The number of features for each drug vares between 3 to

15 in total. UNCOVER finds at most one significant module for decreased and increased sensitivity

respectively, and genes in both directions are used as features (total of 3 to 6 genes). For ProGENI,

we used 20 top ranked genes as features for regression.

We found the drug response profiles for 76 drugs in both CTRP and GDSC datasets, among which

44 drugs with consistent drug response profiles were used (pearson correlation coefficient > 0.25) for

validation. For the 44 drugs, we trained the model with GDSC datasets for the modules identified by

the algorithm and tested with the responses in CTRP. The hyperparameters were learned using 4-fold

cross validation in GDSC among the same parameter combinations given above and the best models

were used to predict the drug response values in CTRP.

Validation with CTRP dataset using ANOVA test. To test if the alteration status of selected genes

are associated with different drug responses, we also performed ANOVA tests by testing UNCOVER

and NETPHIX modules identified from GDSC dataset in the drug responses in CTRP. For each mod-

ule, we divided the cell lines into three groups; The cell lines (CI) with alterations in increased



sensitivity genes but no alterations in decreased sensitivity genes, the cell lines (CD) with alterations

in decreased sensitivity genes but no alterations in increased sensitivity genes, and the cell lines (CN )

with no mutations in the identified genes. We then performed ANOVA tests for the cell survival rates

(AUC) in CTRP dataset for the three groups (CI , CD, and CN ), and the modules with p < 0.05 are

considered as validated.
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