
Node-Optimal Connected k-Subgraphs

Dorit S. Hochbaum ∗

Department of Industrial Engineering and Operations Research and
Walter A. Haas School of Business,
University of California, Berkeley

Anu Pathria †

Department of Industrial Engineering and Operations Research,
University of California, Berkeley

August 4, 1994

Abstract

In this paper we consider the problem of optimally selecting a set of k nodes in a node-
weighted graph, under the requirement that the subgraph induced by the set of nodes
selected is connected. This problem arises in a Norwegian off-shore oil-drilling application.
We show this problem to be NP-complete on general graphs, but provide a polynomial
time algorithm to find an optimal solution for trees. We conclude with some approximation
algorithms for the problem on general graphs.

0 Introduction

Consider the Connected k-Subgraph problem, defined on a graph whose nodes have non-negative
weights, in which the objective is to find a connected subgraph on k nodes such that the sum
of the weights of the nodes selected is minimized (or, maximized).

This problem models a situation that arises in a Norwegian off-shore oil-drilling application.
Given a set of locations where a facility can be set up, each with a certain cost or benefit, the
problem is to select (up to) k contiguous facilities to build, such that the overall benefit is
maximized. By modeling the facilities as nodes, with the node weight corresponding to the
cost or benefit of the associated facility, and the connectivity of two stations represented by
an edge in the graph, we can see that the oil-drilling optimization problem can be modeled
by the Connected k-Subgraph problem. Another problem that can be formulated by Connected
k-Subgraph comes from forest harvesting: imagine the problem of optimally selecting k cells
to harvest, where each cell has an associated benefit, such that the harvested cells must be
contiguous.

In Section 1, we show that both the maximization and minimization Connected k-Subgraph
problems are NP-hard, even if the input graph is assumed to be either bipartite or planar, and

∗Research supported in part by ONR contract N00014-91-J-1241.
†Author supported in part by an NSERC ’67 scholarship provided by the Natural Sciences and Engineering

Research Council of Canada.

1

Node-Optimal Connected k-Subgraphs 2

the node weights are restricted to be from the set {0, 1}. In Section 2, we provide a polynomial
algorithm, based on dynamic programming, for the problem when the input graph is a tree.
Approximation algorithms for both the maximization and minimization problems for general
graphs are developed in Section 3. The paper concludes with a summary.

1 Problem Complexity

Because the optimal solution to an instance of the Connected k-Subgraph problem is unchanged
if a constant value is added/subtracted to each node, our restriction that the node weights be
non-negative is not limiting. Also observe that a maximization problem can be converted to a
minimization problem (and vice-versa) by multiplying the node weights by −1 (and adding a
suitable constant so that node weights are non-negative). 1

We establish that the Connected k-Subgraph maximization problem is NP-hard via a re-
duction from Steiner Tree, which is known to be NP-complete (see [Kar72], [GJ79]); from
our comments above, this also implies that the Connected k-Subgraph minimization problem is
NP-hard.

Theorem 1.1 The Connected k-Subgraph decision problem is NP-complete.

Proof: It is clear that the problem is in NP.

Given an instance of Steiner Tree on a graph G = (V,E), with R ⊆ V the set of nodes
to be included in the tree and all edges having unit weight (the problem remains NP-
complete even with this assumption of unit weight edges), the objective is to find a tree of
minimum weight that spans the nodes in R. Construct a node-weighted graph G̃ = (V,E)
where wv, the weight assigned to node v ∈ V , is defined as:

wv =

{
1 if v ∈ R
0 otherwise.

Observe that, in general, a collection of n nodes induces a connected subgraph if and only
if there exists a tree with n − 1 edges spanning the n nodes. It is then easy to see that
G̃ has a connected (k + 1)-subgraph of weight |R| if and only if G has a Steiner tree of
weight k.

Notice that in the above proof we reduce an instance of Steiner Tree to an instance of the
Connected k-Subgraph maximization problem on a graph with {0, 1} node weights (we could
also have reduced to a minimization problem with {0, 1} nodes weights by toggling the weights
assigned to the nodes in our reduction). This observation is used in the following corollaries to
Theorem 1.1:

Corollary 1.1 The Connected k-Subgraph problem is NP-hard even when restricted to bipartite
graphs with {0, 1} node weights.

1In fact, the optimal solution is unchanged under any linear transformation applied to the node weights; the
objective, however, will be converted from maximization to minimization (or vice-versa) if the linear multiplier
is negative.

Node-Optimal Connected k-Subgraphs 3

Proof: Follows from the fact that Steiner Tree remains NP-hard for bipartite graphs with unit
weight edges (attributed to E. R. Berlekamp in [GJ79]).

Corollary 1.2 The Connected k-Subgraph problem is NP-hard even when restricted to planar
graphs with {0, 1} node weights.

Proof: Follows from the fact that Steiner Tree remains NP-hard for planar graphs with unit
weight edges (see [GJ77]).

2 Optimal Solution for Trees

In this section, we show that an optimal connected k-subgraph on a tree can be found in
polynomial time. Our algorithm will rely on the ability to solve a Multiple-Choice Knapsack
problem. So, we first provide a formulation and algorithm for this knapsack problem.

2.1 The Multiple-Choice Knapsack Problem

Instance: Given a resource bound R, and M decisions to be made. Corresponding to each
decision stage, m, a set Dm is given: Dm consists of ordered pairs of the form (bmi , rmi),
the benefit and resource usage respectively of selecting decision choice i. All resource
values are assumed to be integers.

Optimization Problem: Select exactly one decision choice for each decision, such that no
more than R resource units are used, so as to maximize the total benefit.

Note that in the usual integer Knapsack problem there are only two possible choices at each
decision stage, one of which corresponds to doing nothing (i.e. can achieve 0 benefit using 0
resource units.)

The Multiple-Choice Knapsack problem can be formulated as an integer program. Let xmi
be an indicator variable equal to 1 if and only if choice i is selected for decision stage m.

max
∑M

m=1

∑|Dm|
i=1 bmi xmi

subject to
∑M

m=1

∑|Dm|
i=1 rmi xmi ≤ R∑|Dm|

i=1 xmi = 1, for m = 1, . . . ,M

xmi ∈ {0, 1}, ∀xmi

The first constraint sets the bound on the total resource usage, as in the usual integer
knapsack problem, and the second set of constraints ensures that exactly one choice is selected
for each decision stage. We can solve this optimization problem using a dynamic programming
approach. For r = 0, 1, . . . , R, let K(m, r) be the optimal set of decision choices for decision
stages 1 through m, inclusive, with total resource usage r.

Node-Optimal Connected k-Subgraphs 4

Boundary Conditions:

K(0, r) =

{
0, if r = 0
−∞, otherwise.

K(m, r) = −∞, for r < 0.

Recurrence: For m = 1, . . . ,M and r = 1, . . . , R,

K(m, r) = max
(bm

i
,rm

i
)∈Dm

{K(m− 1, r − rmi) + bmi }

Solution: K∗ = max0≤r≤R{K(M, r)}.

The K() values are calculated in increasing values of m. For each fixed decision stage m and
resource value r, K(m, r) can be calculated in O(|Dm|) time. It follows that the overall com-
plexity to find K∗ is O(RD), where D =

∑M
m=1 |Dm|. This running time is pseudo-polynomial

in the size of the input.

2.2 Algorithm for Connected k-Subgraph Problem on Trees

We now show that the Connected k-Subgraph problem can be solved in polynomial time on
trees. Let n be the number of nodes in the graph T = (V,E), and let wv be the weight of node
v. Without loss of generality, we present a dynamic programming solution to the maximization
problem.

Root T at any node, r. For all v ∈ V and j = 0, 1, . . . , k, define S(v, j) as the value of the
optimal connected j-subgraph in Tv, where Tv is the subtree (w.r.t. the rooting) of T with v
as root, such that v is included in the j-subgraph.

Boundary Conditions: For v ∈ V a leaf node in T ,

S(v, j) =

 0, if j = 0
wv, if j = 1
−∞, for j = 2, . . . , k

Recurrence: Let Γ(v) denote the set of children of v.

S(v, 0) = 0

For j = 1, . . . , k:

S(v, j) = wv + max
∑

y∈Γ(v)

j−1∑
i=0

S(y, i)xy
i

subject to
∑

y∈Γ(v)

j−1∑
i=0

ixy
i = j − 1

j−1∑
i=0

xy
i = 1, ∀ y ∈ Γ(v)

xy
i ∈ {0, 1}, ∀ y ∈ Γ(v), i = 0, . . . , j − 1

Node-Optimal Connected k-Subgraphs 5

Solution: S∗ = maxv∈V {S(v, k)}.

Now, for a given node v ∈ V , the optimization problems presented in the recurrence ex-
pressions for the S(v, j)’s can be solved via a single Multiple-Choice Knapsack problem: set
R = k, and let each decision stage correspond to a child y ∈ Γ(v) (so, M = |Γ(v)|), where for
each child a choice must be made as to what size of subgraph rooted at that child to select (so,
|Dm| = k + 1, for all decisions m).

Then, for the fixed node v, K(M, j) corresponds to S(v, j), so that all S(v, j) can be calcu-
lated in time O(k2 |Γ(v)|). Because there are n−1 total children in T , it follows that all S(v, j)
(∀v ∈ V , and for all integers 0 ≤ j ≤ k) can be computed in time O(k2n).

Theorem 2.1 The complexity of the dynamic programming procedure for calculating S∗, the
optimal solution to the Connected k-Subgraph problem, is O(k2n), which is polynomial in the
size of the input.

3 Approximation Algorithms for General Graphs

We show that, for general graphs G = (V,E), a k-approximate solution can be found to the
Connected k-Subgraph minimization problem and that a 1

k -approximate solution can be found
to the Connected k-Subgraph maximization problem, both in polynomial time. While these
may not be very satisfactory approximation guarantees, at least they show that polynomial
approximation algorithms do exist whose running time and approximation guarantee do not
depend upon the actual node weights (we only assume that the nodes weights are non-negative).

3.1 1
k
-Approximation Algorithm for Maximization Problem

Consider the connected components of G, and let w be the maximum weight of a node in a
connected component with at least k nodes. Clearly, the optimal solution to the Connected
k-Subgraph maximization problem does not exceed kw. But, by including a node of weight w,
we can easily construct a solution of weight at least w.

3.2 k-Approximation Algorithm for Minimization Problem

The nature of our k-approximation algorithm for the minimization problem is reminiscent
of the approach taken in [HS86] to develop approximation algorithms for certain bottleneck
optimization problems.

Let the nodes of G be numbered 1, . . . , n so that w1 ≤ . . . ≤ wn. Define Gi as the subgraph
of G induced by nodes whose weight does not exceed wi. Consider the following test:

Test(Gi): Does Gi have a connected component with at least k nodes?

Clearly, Test(Gi−1) = “no” implies that the optimal solution to the Connected k-Subgraph
minimization problem is at least wi. On the other hand, Test(Gi) = “yes” implies the existence
of a solution with weight not exceeding kwi. The following k-approximation algorithm follows:

Node-Optimal Connected k-Subgraphs 6

1. Find i∗ = mini{Test(Gi) = “yes”} .

2. Return a connected subgraph of Gi∗ on k nodes.

The above procedure can be implemented either via a binary search method for finding i∗

(fewer calls to Test(), but more work per call), or via an incremental iterative search for i∗

(more calls to Test(), but less work per call since Gi’s build on each other).

4 Summary

In this paper, we have defined the Connected k-Subgraph problem, and established several
complexity results. First, we established that the problem is NP-hard, even when the input
graph is highly restricted. Second, we have shown that the problem can be solved in polynomial
time, using dynamic programming, when the input graph is a tree. Finally, we have provided
O(k) approximation algorithms for both the maximization and minimization problems.

We have considered the problem in which exactly k nodes are to be selected; the approxi-
mation algorithms also assume that the node weights are non-negative. It would be desirable
to establish complexity results, similar to the ones mentioned, for the problem in which up to k
nodes are to be selected, such that a connected subgraph is induced, where there is no assump-
tion on the sign of the node weights. In particular, it would be desirable to explicitly establish
that this problem is NP-hard, and also to derive approximation results; observe, however, that
because the O(k2n) dynamic programming procedure presented for trees does not make any
assumption on the sign of the node weights, and that an optimal solution for the Connected
j-Subgraph problem for all j = 1, 2, . . . , k is returned, it is also an O(k2n) algorithm for this
problem.

References

[GJ77] M.R. Garey and D. S. Johnson. The Rectilinear Steiner Tree Problem is NP-complete.
SIAM Journal on Applied Mathematics, 32:826–834, 1977.

[GJ79] M.R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco, 1979.

[HS86] D. S. Hochbaum and D. Shmoys. A Unified Approach to Approximation Algorithms for
Bottleneck Problems. Journal of the Association for Computing Machinery, 33(3):533–
550, July 1986.

[Kar72] R. M. Karp. Reducibility Among Combinatorial Problems, pages 85–103. Complexity
of Computer Computations. Plenum Press, New York, 1972. R. E. Miller and J. W.
Thatcher (eds.).

