
ELSEVIER Discrete Applied Mathematics 74 (1997) 159-I 69

DISCRETE
APPLIED
MATHEMATICS

k-edge subgraph problems

Olivier Goldschmidt a,‘, Dorit S. Hochbaum b,*
a Departmrnt of Mechanical Enyineering, The Universitv qf Texus at Austin, TX, LISA

b I. E. & 0. R. Deportment, Unioersity of Cd@xin at Berkeley, Etchewrry Hall, Berkrlq,,

CA 94720-1777. USA

Received 7 November 1994: revised 9 February 1996

Abstract

We study here a problem on graphs that involves finding a subgraph of maximum node
weights spanning up to k edges. We interpret the concept of “spanning” to mean that at least
one endpoint of the edge is in the subgraph in which we seek to maximize the total weight of
the nodes. We discuss the complexity of this problem and other related problems with different
concepts of “spanning” and show that most of these variants are NP-complete. For the problem
defined, we demonstrate a factor 3 approximation algorithm with complexity O(kn) for a graph
on n nodes. For the unweighted version of the the problem in a graph on m edges we describe
a factor 2 approximation algorithm of greedy type, with complexity O(n + m). For trees and
forests we present a polynomial time algorithm applicable to our problem and also to a problem
seeking to maximize (minimize) the weight of a subtree on k nodes.

1. Introduction

In this paper, we consider a problem we call the /c-edge-incident subgraph problem.

In this problem one seeks to maximize the total weight on the nodes on a subgraph

that spans up to k edges. We consider an edge to be spanned by a subgraph if at least

one of its endpoints is in the subgraph.

Formally, let G = (V,E) be a simple and undirected graph with vertex set V and

edge set E. Let w(u) 3 0 be the weight of node u E V. If W(U) = 1,Vv E V, then G is

said to be unweighted. The k-edge-incident subgraph problem is to find a set of nodes

W c V of maximum weight such that the number of edges with at least one endpoint

in W is at most k.

Our study of the k-edge-incident problem was motivated by an application to the

loading of semi-conductor components to be assembled into products [5]. When the

buffer can accommodate up to k different components, and each component is to be a

* Corresponding author.
’ This research has been supported in part by ONR grant NOOOl4-91-J-1241.
’ This research has been supported in part by ONR grant NO00 14-9 I-J- I24 I.

0166-2 18X/97/$17.00 0 1997 Elsevier Science B.V. All rights reserved
PII SOl66-218X(96)00030-3

160 0. Goldschmidt, D.S. Hochbauml Discrete Applied Mathematics 74 (1997) 159-169

part of precisely two products, the problem of choosing the components so the maxi-

mum number of products can be produced is the k-edge-incident subgraph problem. If

each product has a different weight corresponding to, say - its profit contribution, the

problem is to maximize the total weight of the nodes in the subgraph.

We define an algorithm to be a p-approximation algorithm for a maximization prob-

lem if it delivers a feasible solution the value of which is at least p times the optimum.

Obviously, 0 < p < 1. 1 is frequently referred to as the approximation factor.

In this paper, we shgw that the problem of finding a set of nodes W c V of max-

imum cardinality such that the number of edges with at least one endpoint in W

is at most k is NP-complete in the strong sense. Further, we show that the prob-

lem remains NP-complete even if restricted to graphs with maximum degree equal to

three.

We present approximation algorithms for the k-edge-incident subgraph problem: For

general unweighted graphs we introduce a greedy method for finding a maximum

cardinality set of nodes W such that the number of edges with at least one endpoint in

W is at most k. The cardinality of a set obtained by such greedy algorithm is proved

to be at least i - o(1) times the size of an optimal solution. For weighted graphs, we

provide a i-approximation algorithm of complexity O(kn). Both approximations are

based on an idea of relaxing the problem to a Knapsack-like problem.

We show that the k-edge-incidence subgraph problem is solvable in O(k*l VI) time

for graphs that are acyclic and weighted. The unweighted case is solvable in linear

time for unweighted trees or unweighted forests even with simple unweighted cycles.

This k-edge problem on trees is equivalent to a k-node problem on a tree. Given a tree

with weighted nodes, find a subtree (rooted at a specific node or without any rooting

specification) on k nodes that maximizes the sum of node weights. This latter problem

comes up in the context of database organization, and thus the algorithm stated proves

the polynomiality of that problem.

Related problems. It is useful to view the k-edge-incident problem as one in a class

of problems where one is seeking a subgraph that restricts the number of spanning

edges or the number of nodes. Consider the following two problems that also define a

subgraph constrained by the number of edges it spans. Here however the definition of

spanning is different.

a. k-edge-in subgraph: Find a set of nodes W c V of maximum weight such that

the subgraph induced on W has at most k edges.

b. k-edge-cut subgraph: Find a set of nodes W c V of maximum (minimum) weight

such that the number of edges with exactly one endpoint in W is at most k.

Like the k-edge-incident subgraph problem the k-edge-in problem is also NP-

complete in the strong sense. To see this consider the recognition version of the

k-edge-in subgraph problem in an unweighted graph:

Instance: A graph G = (V, E) and integers k and L.

Question: Is there a set of nodes W c V, with 1 WI > L, such that the number of edges

with both endpoints in W is at most k?

0. Goldschmidt, D.S. Hochbaum I Discrete Applied Muthematics 74 11997) 159-169 161

The k-edge-in subgraph problem is to find an induced subgraph on a maximum

number of nodes and with at most k edges. For k = 0, this problem is equivalent

to the maximum independent set problem. For k > 0, the problem was proved to be

strongly NP-hard by Yannakakis [12]. For either k = 0 or k > 0 the problems remain

NP-complete even if the input graph is cubic or planar [121.

The k-edge-cut problem is trivial: for maximization, the optimal solution is W = V,

and for minimization - W = 8. The versions of the k-edge-in and k-edge-incident

subgraph where the number of “spanning” edges is required to be exactly equal to k

are easily shown to be NP-complete by a reduction from the maximum cut problem.

Other related subgraph problems where the number of nodes in the subgraph is

restricted to k, we call k-node subgraph problems. Such problems have been the subject

of investigation recently, and it appears that they are not only NP-complete, but also

for several of them it is more difficult to achieve good approximations.

One such k-node subgraph problem is the maximum den&J> problem on a subgraph

with k nodes at most. The density of a subgraph is the number (or weight) of edges

divided by the number (or weight) of the nodes in the subgraph. Without the restriction

on the number of nodes, the problem is known to be polynomial by a reduction of

repeated calls to the selection problem, and applications of a minimum cut algorithm

(see [7, 41). With the restriction on the number of nodes, the problem is easily seen

to be NP-hard by a reduction from the k-clique problem.

In [8], Kortsarz and Peleg presented a factor 6(no3885) approximation algorithm for

the maximum density k-node subgraph problem (here d means that polylog factors

are omitted), i.e. the optimum value could be up to to d(n0.3885) times the algorithm’s

solution value. For the special case where the weights on the edges obey the triangle

inequality, a greedy approach guarantees a solution of weight at least i the optimal

(see [lo]).

An interesting variant (pointed out by one of the anonymous referees) is when the

density is measured in terms of the number of incident edges (i.e. those that have at

least one endpoint in the subgraph) divided by the number of nodes in the subgraph. It

is easy to see that in this case a greedy algorithm choosing a node of maximum degree

at a time, will deliver a solution that is at least i times the value of the optimum.

Another k-node subgraph problem is to find k nodes so that the subgraph’s min-

imum spanning tree is of least weight compared to all subgraphs on k nodes. This

problem was shown NP-complete by Ravi et al. ([l I]). [l l] also described a 0(&)-

approximation algorithm for general graphs and an O(k”4) approximation algorithm

for Euclidean graphs. In [2], Garg and Hochbaum introduced a O(log k)-approximation

algorithm for the problem in the plane. For general graphs a 0(log2k)-approximation

algorithm was recently established by Awerbuch et al. [l], and for Euclidean graphs

Mitchell demonstrated a factor of 2 and factor of 2& approximation algorithms for

the Li and L2 metrics, respectively [9].

The sparsest k-node subgraph problem is to find k nodes with minimum sum of edge

weights connecting them. The question of whether the graph contains an independent

set of size k is reducible to the sparsest subgraph problem and hence the latter is

162 0. Goldschmidt, D.S. Hochbaum I Discrete Applied Mathematics 74 (1997) 159-169

NP-complete in the strong sense. If edge weights can be zero, then any approximation

algorithm is infinitely bad, and therefore the problem is only meaningful for positive

weights.

Another k-node subgraph problem introduced by Garg and Hochbaum [2], requires

finding a maximum (or minimum) node weight subgraph, on k nodes, which is con-

nected. The problem is NP-hard for both maximum and minimum objectives even if

all node weights are 0 or 1, but is polynomial if all node weights are equal. The

procedure given in Section 4 is applicable to the problem and demonstrates that the

problem is polynomial on trees with either positive or negative weights. The problem

has been studied recently in ([6]), but no approximation with factor better than O(k) is

known.

Overview. In Section 2 we prove the NP-hardness of the k-edge-incident problem.

Section 3 contains the description and proofs for the approximations algorithms for

the unweighted and weighted graphs. Finally, Section 4 describes the polynomial time

algorithm that is applicable for acyclic graphs and those that contain in addition simple

cycles.

2. Complexity of k-edge-incident subgraph problems

In this section the k-edge-incident subgraph problem is shown to be strongly NP-

hard.

The k-edge-incident subgraph problem is proved NP-complete by a reduction from

the maximum clique problem. We call the decision problem corresponding to the max-

imum clique problem - MAXCLIQUE.

The MAXCLIQUE problem is defined as follows:

Instance: A graph G = (V, E) and an integer C 6 1 VI.

Question: Does G contains a clique of size greater than or equal to C?

MAXCLIQUE remains NP-complete even if the input graph is restricted to be a

r-regular graph. This is because the independent set problem is NP-hard even in cubic

graph [3]. The complement of a cubic graph is a (1 VI -4)-regular graph. An independent

set in a cubic graph corresponds to a clique in its complement.

Theorem 1. The decision problem of the k-edge-incident subgraph is NP-complete.

Proof. The problem is clearly in NP: given a graph G and a set of its nodes W,

(W (2 L, one can verify in linear time whether the number of edges incident to W is

smaller or equal to k. We now transform any instance of MAXCLIQUE in r-regular

graph into an instance of k-edge-incident subgraph problem such that MAXCLIQUE

has an answer “yes” if and only if the corresponding k-edge-incident subgraph problem

has an answer “yes.”

0. Goldschmidt, D.S. Hochbaum I Discrete Applied Mathematics 74 (1997) 159-169 163

Let {G = (V,E), C} be an instance of MAXCLIQUE in a r-regular graph. We

construct the corresponding instance of k-edge-incident subgraph as follows. The input

graph of k-edge-incident subgraph is the same as the input graph of MAXCLIQUE,

G = (I’, E). k = Cr - C(C - 1)/2 and the question is whether there exists a set of

nodes W, / WI 3 C, with a number of edges incident to W smaller than or equal to

k=Cv-C(C-1)/2.

We show that G has a clique of size C if and only if G has a k-edge-incident

subgraph of size C with capacity < k.

For G with a clique of size C let W be the set of nodes of such clique. The number

of edges incident to W is Cr - C(C - 1)/2, hence W is a k-edge incident subgraph

of size C.

Conversely, if G contains a k-edge-incident subgraph of size C, then the number of

edges incident to W is equal to rC minus the number of edges which connect nodes

of W. Because the capacity is k = rC - C(C - 1)/2, the number of edges in the graph

induced by W is C(C - 1)/2. Hence, W induces a complete subgraph (or clique)

inG. 0

3. Approximation algorithms

In this section we present approximation algorithms for the k-edge-incident subgraph

problem that are based on a greedy algorithm, or on a relaxation of the problem to a

Knapsack problem.

We first present a “greedy” algorithm that is a i-approximation for the problem on

unweighted graphs. The method is called “greedy” because it always selects a “best”

candidate among the nodes that have not yet been chosen without backtracking. The

algorithm for the unweighted case selects a node of minimum degree in the remaining

graph, obtained by deleting the nodes already selected. Formally, denote by E(W) the

set of edges incident to the set of nodes W c V and by G[W] the subgraph induced

on W.

Algorithm (HI):

Set W = 0; V’ = V; i = 0.

Sort the nodes in nondecreasing order of degrees.

repeat

Select a node of minimum degree t: E V’, in G’ = G[V’];

If IE(W U {u})I > k, then STOP;

Else, W +- W U {v}; wf = II.

Set V’ + V’ \ {v}; i + i + 1.

end

Because one can bucket-sort the vertices of a graph by increasing degree in 0(/ V (+

/El), algorithm (Hi) takes O((V\ + IEI) t ime. The following theorem bounds the ratio

of the solution obtained by (Hi) to the value of the optimal solution 1 W*(= OPT.

164 0. Goldschmidt, D.S. Hochbaum I Discrete Applied Mathematics 74 (1997) 159-169

Theorem 2. Algorithm (HI) delivers a solution WH which is at least [OPT/2].

Proof. Let t = [OPT/2J. We show that Algorithm (HI) picks at least t nodes without

having the sum of degrees exceeding k. Let {w:, wt, . . , w&-} be nodes of an optimal

solution ordered such that for d, the degree of node v E V, d,; <d,; < . . . <d,;.

Let WH = {wr,wF,..., w,“} be a solution obtained by algorithm (HI). Let @ =

{ w:,w;,..., wt*} n {wY,wF)...) 4).

Let d$” be the degree of WY in the remaining graph G’ during the iteration when q

is selected. Clearly, the number of edges incident to W* is at least (~,*,,* d+,,;)/2.

Because the greedy algorithm always selects a node of minimum degree in the remain-

ing graph, the number of edges incident to the first (OPT/21 selected nodes by the

greedy is at most

Hence the required result. 0

This greedy algorithm could be viewed as a special case of the following “Knapsack”

algorithm devised for the weighted case. This will be further detailed below. Let OPT

be the value of an optimal solution to the weighted k-edge-incident subgraph problem

and let o(o) be the weight of node v. Obviously, each node in a feasible solution

satisfies d, d k, hence we can remove from further consideration all nodes of degree

exceeding k. For the weighted case, the following knapsack problem is a relaxation of

the k-edge-incident subgraph problem for 2k = M.

z(M) = max C w(v)x,
VEV

s.t. C dUxL’ d M @nap(M))
VEV

The sum of nodes’ degrees in the optimal solution is less than or equal to 2k and there-

fore OPT is a feasible solution to Knap(2k). It follows that the value of the optimal

solution to Knap(2k), z(2k), is an upper-bound on the optimal solution, OPT d z(2k).

Consider the approximation algorithm is to solve optimally the problem Knap(k).

The optimal solution to Knap(k), V(k) = {v E V Ix, = I}, is feasible for the

k-edge-incident problem. In Theorem 3, we show that z(k) is at least OPT/3. For

the unweighted case, the greedy algorithm (Hi) solves optimally Knap(k). Hence theo-

rem 3 is also a proof that the greedy is a i-approximation algorithm for the unweighted

case, which is a weaker statement than the one proved in Theorem 2. As we shall see

though, the proof of Theorem 3 implies in fact Theorem 2.

Knap(k) is solved by dynamic programming in O(klVI) time. Since k < IEI, this

time is polynomial in the input size which is O(&v log o(a) + lE1).

0. Goldschmidt, D.S. Hochbauml Discrete Applied Mathematics 74 11997) 159-169 165

4 d2 I . . . : d, da+1 * 0.

k 2k

Fig. 1. Illustration of the proof of Theorem 3.

Theorem 3. The knapsack algorithm is a f-upproximation algorithm for the k-edgye-

incident problem.

Proof. As stated above, OPT < z(2k).

To complete the proof, it suffices to show that z(2k)d3z(k). Let W” = {w;“, wt,. ,

w:} be an optimal solution to z(2k) where the vertices of W are arbitrarily or-

dered. Vertex w/* E W* occupies dj slots in the knapsack, from slot xi:, di + 1

to slot c:S,’ dj + dj. Let W: be the vertex which occupies slot k + 1 in the knapsack

(see Fig. 1). Note that WE may also occupy slots to the left and/or to the right of slot

k + 1 but cannot occupy more than k slots because we may assume that di d k, Vi.

{I+:,. . ,wz_,} and {wE+i,. .., w:} are both feasible solutions for Knap(k) because

C,“=r’ d, < k and C&+, di d k. Therefore, cozy’ o(wi) d z(k) and C&,+, o(w,)

d z(k). For the same reason w(wp) d z(k). Hence z(2k) d 3z(k), which completes

the proof of the theorem.

For unweighted graphs, the vertex WE contributes only a single unit of weight to the

objective function, so the total solution value in only at most twice the optimum plus

this single unit. This implies the result of Theorem 2. -

4. Polynomially solvable instances

In this section we present polynomial time algorithms for the k-edge-incident problem

on acyclic graphs. We first present the easy unweighted case for a tree. Because of

the “packing” nature of the k-edge problems, solving on a tree does not immediately

imply a solution on a forest, as the number of edges packed in each component needs

to be considered. We then extend the algorithm for forests with isolated cycles.

We then present a dynamic programming algorithm for weighted trees (extensions to

forest and forests with isolated cycles work analogously). The dynamic programming

overcomes the potentially exponential hurdle of allocating the appropriate number of

nodes to each child.

The weighted problem comes up as a k-nodes problem in applications related to

organization of databases. For acyclic graphs and trees the node problem is equivalent

to the edge problem: assign the weight of the node to the edge connecting it to its

parent. This is therefore the first known polynomial algorithm for the problem of finding

a subtree on k nodes of maximum (or minimum) weight. The closely related problem

of finding a maximum weight closed set of k-nodes in a DAG is NP-complete (using

a reduction from CLIQUE via the selection problem).

166 0. Goldschmidt, B.S. Hochbaumi Discrete Applied Mathemarics 74 (1997) 159-169

4.1. Unweighted polynomially solvable instances

On an unweighted graph tree T = (V, E), the problem is solvable in linear time. Recall

that the number of edges of a tree is exactly (1 V(- 1). If 1 VI < k + 1, then the optimal

solution is the entire graph. Otherwise we use the following linear time algorithm:

Algorithm (Hz):

W = 8; T’ = T

Repeat k times:

Select a leaf v E T’;

w + w u {u};

T’ t T’ \ {v}.

The correctness of algorithm (H2) follows since any proper subtree T’ c T has at least

1 T’(edges incident to it. The algorithm delivers a set W with exactly 1 WI edges incident

to it, which meets the lower bound and is hence optimal. The linear time complexity

follows from the easy search for a leaf node. A new leaf joins the list of leaf nodes

only when the last of its children is removed. It is therefore sufficient to check, upon

deletion of a node, whether its parent has become a leaf.

For a forest as the unweighted input graph G, the following 0(I VI) algorithm delivers

an optimal solution:

Algorithm (Hj):

Sort the trees of the forest by increasing size;

Let T,, T2, . . . be the list of sorted trees;

W = 0; j = 0;

Do while IE(W)l < k:

j+-j+l, W+ WUTj

Apply algorithm (H2) to T,+I

with capacity equal to k - (E(W)l.

The algorithm (H3) is of linear complexity as trees can be sorted in O() VI) by using

a bucket-sort technique.

To see that this algorithm actually delivers an optimal solution, notice that the num-

ber of nodes in the algorithm’s solution, W, is equal to k plus the number of whole

trees induced by W. Any solution with k edges has at most that many nodes. So an

optimal solution, W* is one that maximizes the number of whole trees induced by

W*, which is delivered by algorithm (Hx).

The problem on unweighted graphs consisting of trees and isolated cycles is also

solvable in polynomial time using an algorithm similar to (HZ). Isolated cycles are

sorted by increasing size and placed in the list of sorted components after the trees.

4.2. Weighted polynomially solvable instances

For weighted acyclic graphs, we describe a dynamic programming approach. First

consider the graph to be a tree rooted at an arbitrarily selected node v, E V. The

0. Goldschmidt, D.S. Hochbaum I Discrete Applied Mathematics 74 119971 159-169 167

algorithm recursively computes an optimal solution for a subtree rooted at v,V’v E V

and using exactly p edges, for p = 1,. . . , k. Let F,(p) be the value of such optimal

solution. We distinguish between F:(p), the optimal value of a solution that includes

node ti (but the edge that connects node 2: to its parent is not counted) and F,?“‘(p), the

optimal value of a solution that excludes node v. Then, F,(p) = max{F:.“(p), Fy’(p)}.

Our optimal solution is max,,VF,(k).

For a node t‘ E V that is not a leaf, let ~1, ~2,. . . , We be its children ordered

arbitrarily. Define G:.“(q,t) to be the value of an optimal solution using q edges that

includes u in the subtree rooted at u but of which the subtrees rooted at children

t + 1,. . , C(C) have been pruned; i.e. permits only the inclusion of subtrees rooted at

WI,. . , wt. Gy’(q, t) is defined in a similar way for the case that u is excluded. We are

now ready to write the recurrence relations for this dynamic programming algorithm.

Algorithm (I&):

F:.“(p) = G;!‘(p, c(v)),

F?%J) = GTt(p,c(v)),

($‘(q, t) = max
max [F,,(s)+Gf(q-s-l,t-l)],

s=,l,-.,q--f+l
G;(q - l,t - l),

(2)

max [F~,~‘(s) + Gp’(q - s, t - l)],
s= 1 ,....q

out G, (q, t) = max S=y,=_, [F:(s) + GZ”‘(q -s - 1.t - l>l, (4)

G$q, t - 1).

The correctness of Eqs. (1) and (2) follows from the definitions of Gr(q, t) and

Gy’(q, t).

In recurrence relation (3), the number of edges allocated to the subtree rooted at the

tth child of node v, wt, cannot be more than q - t + 1 because t - 1 edges must be

“reserved” for the connections of node u to its first t - 1 children. Actually, because

we assume that node v is in the solution, every edge incident to it must be counted

whether or not its children are included in the solution. The second line in recurrence

relation (3) is for the case when the subtree rooted at wf is null.

In the first line of recurrence relation (4), we assume that s edges are allocated to

the subtree rooted at wt but that node wt itself is not part of the solution. Because we

assume that node u does not belong to the solution, one can allocate all q edges to

the subtree rooted at wt because none of the edges that connect node v to its children

has to be in the solution, only the edges that connect v to its children that are part

of the solution. The second line of (4) assume that node wt is taken in the solution.

Therefore, s cannot be greater than q - 1 because one edge has to be reserved for the

connection of wt to its parent v. The third line of (4) accounts for the case the subtree

rooted at W, is null.

168 0. Goldschmidt, D.S. Hochbauml Discrete Applied Mathematics 74 (1997) 159-169

Boundary conditions are given below.

If v is a leaf, then

F?(p) = m(v) p = O,...,k;

F,ou’(p) = 0 p = 0,. . , , k.

Also, Vu, t,

F,OUt(0) = GFt(O,t) = 0;

ly(p) = -CC p < 0;

Grt(q, t) = --oo q < 0;

F?(p) = -co p d 0;

G:“(q,t) = -cc q < 0.

Notice that the dynamic programming imposes an order on the children of a node

and processes them in the prescribed order while maintaining the accumulated sum of

nodes allocated to the children processes.

The computation of the value of GF(q, t) or G,OU’(q, t) takes O(k) steps. Because these

functions need to be computed for all vertices v E V and all possible values of q =

1,. . , k, it follows that the complexity of the above described dynamic programming

algorithm has complexity 0(1 V 1 k2).

It is worth noticing that the dynamic programming described above would also de-

liver an optimal solution if the edges of the tree were assigned non-negative weights.

Moreover the running time of the algorithm would have identical complexity, namely

O(l I’lk21.
The problem on a weighted forest is solved in O(l Vlk2) time using the following

adjustment. Tree Ti of the forest is rooted at node vi, arbitrarily chosen among the

nodes of Ti. Node vo of weight zero is added and connected to all roots vi of the trees

in the forest with edges of weight zero. The dynamic programming algorithm is then

executed on the connected tree rooted at vg.

References

[l] B. Awerbuch, Y. Azar, A. Blum and S. Vempala. Improved approximation guarantees for minimum-

weight k-trees and prize-collecting salesmen, in: Proc. 27th Ann. ACM Symp. Theory Comput. (STOC

95) (1995).

[2] N. Garg and D.S. Hochbaum, An O(logk) approximation algorithm for the k-minimum spanning tree

problem in the plane, Proc. 26th Ann. ACM Symp. on the Theory of Computing (1994) 432-438.

[3] M.R. Garey, D.S. Johnson and L. Stockmeyer, Some simplified NP-complete graph problems, Theory

Comput. Sci. 1 (1976) 237-267.

[4] A. V. Goldberg, Finding a maximum density subgraph, Tech. Report No. UCB CSD 84/171, Computer

Science Division (EECS), UC Berkeley, CA (1984).

[5] 0. Goldschmidt, D.S. Hochbaum and G. Yu, A Simulated Annealing Heuristic for the Semiconductor

Components Assembly, Tech. report, I.E.& O.R. Department, UC Berkeley, CA (1994).

0. Goldschmidt, D.S. Hochbauml Discrete Applied Mathematics 74 (1997) 159-169 169

[6] D.S. Hochbaum and A. Path@ Node-optimal connected k-subgraphs manuscript, UC Berkeley. May

(1994).

[7] D.S. Hochbaum and D.B. Shmoys, A best possible parallel approximation algorithm to a graph theoretic

problem, Oper. Res. 933-938, (1987).

[8] G. Kortsarz and D. Peleg, On choosing a dense subgraph, in: Proc. 34th Ann. Symp. on Foundations

of Computer Science (I 993).

[9] J. Mitchell, Guillotine subdivisions approximate polynomial subdivisions: a simple new method for the

geometric k-MST problem, Manuscript, 1995.

[IO] S.S. Ravi, D.J. Rosenkrantz and G.K. Tayi, Facility dispersion problems: heuristics and special cases,

Proc. 2nd Workshop on Algorithms and Data Structures, Ottawa, Canada, Lecture Notes in Computer

Science, Vol. 519, 355-366, (Springer, Berlin, 1991).

[1 I] R. Ravi, R. Sundaram, M.V. Marathe, D.J. Rosenkrantz and S.S. Ravi. Spanning trees short and small.

in: Proc. 5th Ann. ACM-SIAM Symp. on Discrete Algorithms (1994).

[121 M. Yannakakis, Node- and edge-deletion NP-complete problems, Proc. 10th Ann. ACM Symp. on the

Theory of Computing (I 978) 253-264.

