
Can a System of Linear Diophantine Equations be Solved in

Strongly Polynomial Time?

Dorit S. Hochbaum ∗

Department of Industrial Engineering and Operations Research and
Walter A. Haas School of Business,
University of California, Berkeley

email: dorit@hochbaum.berkeley.edu

Anu Pathria †

Department of Industrial Engineering and Operations Research,
University of California, Berkeley

email: pathria@cimsim.berkeley.edu

Oct 17, 1994

Abstract

We demonstrate that the answer to the question posed in the title is “yes” and “no”:
“no” if the set of permissible operations is restricted to {+,−,×,/,mod,<}; “yes” if we are
also allowed a gcd-oracle as a permissible operation. It has been shown (see [Sto76, MST91])
that no strongly polynomial algorithm exists for the problem of finding the greatest common
divisor (gcd) of two arbitrary integers, a and b. This result precludes the possibility of finding
the set of solutions to a system of linear diophantine equations in strongly polynomial time.
We show, however, that given an oracle that finds the gcd of two integers a and b and integer
multipliers (x0, y0) satisfying ax0 +by0 = gcd(a, b), a system of linear diophantine equations
can be solved in strongly polynomial time.

0 Introduction

The problem of solving a system of linear diophantine equations is that of finding the set of
integer solutions to a system of linear equations. For a system, Ax = b, of m equations in n
variables, this problem can be solved using O(n3 log ∆) operations, where ∆ is the magnitude
of the determinant of a rank m submatrix of A (see [DKT87]). While this algorithm runs in
polynomial time in the size of the input, the running time depends on the size of the entries of
A; hence, the algorithm does not run in strongly polynomial time.

Recent results (see [Sto76, MST91]) have shown that no strongly polynomial algorithm exists
for the problem of deciding whether or not two arbitrary integers are coprime; these results in

∗Research supported in part by ONR contract N00014-91-J-1241.
†Author supported in part by an NSERC ’67 scholarship provided by the Natural Sciences and Engineering

Research Council of Canada.

1

Can a System of Linear Diophantine Equations be Solved in Strongly Polynomial Time? 2

turn imply that no strongly polynomial algorithm exists for the problem of determining the gcd
of two arbitrary integers. We show that, as a consequence of the lower bound provided for the
gcd problem in [MST91], no strongly polynomial algorithm exists for the problem of finding
the set of solutions to a system of linear diophantine equations in a complexity model allowing
the operations {+,−,×,/,mod,<}. We further show that the gcd operation is fundamental to
solving linear diophantine equations; namely, if we are allowed to use a gcd-oracle as part of
our set of operations, then we provide an algorithm that finds the set of solutions to a system
of linear diophantine equations in strongly polynomial time. Our algorithm performs O(n3)
operations, including O(n2) calls to the gcd oracle.

Our results amount to showing that the following two problems are strongly polynomial time
reducible to each other: 1) find the gcd of two integers, a and b, along with multipliers x0, y0

such that ax0+by0 = gcd(a, b); and, 2) find the set of solutions to a system of linear diophantine
equations. That is, there exists a strongly polynomial algorithm for the first problem if and
only if there exists a strongly polynomial algorithm for the second. We provide first a proof for
the easy (if) direction of the above result; this is done in Section 1. The reduction in the reverse
(only if) direction is the subject of Section 2, and is the main result (Theorem 2.2) of this paper.
Throughout this paper, we assume that our available set of operations is {+,−,×,/,mod,<}.

1 A Lower Bound

The set of solutions, if any exist, to a system of linear diophantine equations, Ax = b, where
we assume A is a m× n full row rank integer matrix, is expressed by a particular solution, x0,
and a set of linearly independent spanning vectors, x1, . . . ,xn−m, so that

{x | Ax = b, x ∈ Zn} = {x | x = x0 +
n−m∑

i=1

λixi, λi ∈ Z,xi ∈ Zn, ∀i} .

By providing a strongly polynomial reduction from the gcd problem, we show that no strongly
polynomial algorithm exists for the problem of finding the set of solutions to a system of linear
diophantine equations. In contrast, one can find the set of solutions to system of linear equations
over the rationals in strongly polynomial time (see [Edm67]).

Theorem 1.1 Suppose there exists a strongly polynomial algorithm for the problem of finding
the set of solutions to a system of linear diophantine equations. Then, for integers a and b,
we can find gcd(a, b) and integers x0, y0 such that ax0 + by0 = gcd(a, b) in strongly polynomial
time.

Proof: The set of solutions, if any exist, to the diophantine equation

a x + b y = c ,

is provided in the form, (x0, y0), (α, β), where the set of solutions to the diophantine
equation is

{(x, y) | (x, y) = (x0, y0) + k(α, β), k ∈ Z} , where α = − b

gcd(a, b)
, β =

a

gcd(a, b)
.

Can a System of Linear Diophantine Equations be Solved in Strongly Polynomial Time? 3

So, the gcd of a and b is implicit in the solution set. Hence, using a strongly polynomial
algorithm for solving a single diophantine equation in two variables, we can find gcd(a, b)
(by solving ax + by = 0, say). The integer multipliers can then be found in strongly
polynomial time by solving the diophantine equation ax + by = gcd(a, b).

It has recently been shown (see [MST91]) that no finite (fixed length) computation tree with
operations {+,−,×,/,mod,<} can decide whether a and b are coprime, for arbitrary integers a
and b; as a direct consequence of this result, there is no strongly polynomial algorithm for
the gcd problem (find the gcd of two arbitrary integers, a and b) when restricted to this set of
operations. An earlier paper (see [Sto76]) established a similar result when restricted to the
set of operations {+,−,×,/,<} (i.e. no mod operation). The above result, [MST91], implies the
following corollary to Theorem 1.1 (as previously mentioned, we will assume that our available
set of operations is {+,−,×,/,mod,<}):
Corollary 1.1 There is no strongly polynomial algorithm for the problem of finding the set
of solutions to a system of linear diophantine equations. In particular, no strongly polynomial
algorithm exists for the problem of finding the set of integer solutions {(x, y)} to the equation
ax + by = c, where a, b, c ∈ Z.

Proof: From Theorem 1.1, we see that a strongly polynomial to solve a system of linear dio-
phantine equations (indeed, a strongly polynomial algorithm to solve a single diophantine
equations in two variables) would imply a strongly polynomial algorithm for the gcd prob-
lem, which we know does not exist.

We show, however, that with an appropriately defined gcd oracle, we can solve a system
of linear diophantine equations in strongly polynomial time. We will use the oracle to modify
an existing polynomial time algorithm for solving a system of linear diophantine equations to
provide a strongly polynomial algorithm. Suppose that we have an oracle that, given a and b,
returns two things:

GCD-Oracle
1. gcd(a, b)
2. Integers (x0, y0), bounded in length by a polynomial in the length of a and b,

such that ax0 + by0 = gcd(a, b)

We will refer to this oracle as the GCD-Oracle. 1 Note that, in essence, the GCD-Oracle
returns the solution to a single diophantine equation in two variables. The next section of this
paper shows that, using our standard set of operations along with a GCD-Oracle, we can find
the set of solutions to a system of linear diophantine equations in strongly polynomial time.
THis is done by providing a strongly polynomial time reduction to the problem solved by the
GCD-Oracle.

Before proceeding to the next section, we mention that Euclid’s algorithm can be used to
return both the gcd and corresponding polynomial sized multipliers for a pair of integers, a and
b, in O(log(min{|a|, |b|})) steps (see [Sch87]). Note that this running time is polynomial, but
not strongly polynomial. A more thorough treatment of gcd’s can be found in [Knu81].

1Observe that the oracle actually need only return the multipliers x0, y0, as the gcd of a and b can then be
calculated immediately in strongly polynomial time.

Can a System of Linear Diophantine Equations be Solved in Strongly Polynomial Time? 4

2 A “Strongly Polynomial” Algorithm

Our presentation for solving a linear diophantine system follows fairly closely that given in
[Sch87]. The purpose of this paper is not to redevelop the relevant theory of integer lattices;
rather, our aim is to use the GCD-Oracle defined in the previous section to modify an existing
polynomial algorithm that solves a system of linear diophantine equations in to a strongly
polynomial algorithm. As such, we will freely use known results from integer lattice theory in
our presentation (the reader is referred to [Sch87] for a more thorough development).

Our algorithm for solving a system of linear diophantine equations, Ax = b, is based on
finding the Hermite Normal Form of the matrix, A. The Hermite Normal Form of an integer
matrix, A, of full row rank, is the matrix [B 0], where B is lower triangular, nonsingular,
nonnegative, and each row of B has its unique maximum entry located on the diagonal. B is
unique and polynomially bounded in the size of A. [B 0] is obtained from A by elementary
column operations, where an elementary column operation is one of three types: exchange two
columns; multiply a column by −1; add an integer multiple of one column to another column.
In addition, there exists a unimodular matrix U , polynomially bounded in the size of A, such
that AU = [B 0].

Lemma 2.1 Suppose that there exists an algorithm, HNF, that finds the Hermite Normal Form
of an integer matrix of full row rank in strongly polynomial time. Then, we can solve the system
of linear diophantine equations, Ax = b, where A is a full row rank m× n integer matrix and
b is an integer column vector, in strongly polynomial time. Such algorithm requires O(m2n)
operations from the set {+,−,×,/,<} and a single call to HNF with an n× n matrix.

Proof: Let A be an m × n matrix (where m ≤ n because A is of full row rank). We will
assume that the first m columns of A are linearly independent; if not, we can use Gaussian
elimination to permute the columns of A, in strongly polynomial time (O(m2n) operations,
see [Edm67]), so that this is the case.
Let the Hermite Normal Form of A be [B 0], where B is a lower triangular m×m matrix
of rank m. If we let A =

[
A
′
A
′′]

, where A
′

is a nonsingular m × m matrix, then the
Hermite Normal Form of the nonsingular n× n matrix

[
A
′

A
′′

0 I

]
can be written as

[
B 0
B
′

B′′

]
.

The latter matrix can be found, using HNF, in strongly polynomial time (with respect to
the size of A). Define

U =

[
A
′

A
′′

0 I

]−1 [
B 0
B
′

B′′

]
.

Because the sizes of B, B
′
, and B

′′
are polynomially bounded in the size of A, so too is the

size of U . Noting that B and B
′′

are triangular, observe that U can be found in O(m2n)
steps by decomposing U into four components U1, U2, U3, U4 and solving the system:

[
A
′

A
′′

0 I

] [
U1 U2

U3 U4

]
=

[
B 0
B
′

B′′

]
.

Can a System of Linear Diophantine Equations be Solved in Strongly Polynomial Time? 5

Now, AU =
[
A
′
A
′′]

U = [B 0]. That is, U is a unimodular matrix such that AU =
HNF(A).
The general solution to the linear diophantine system is

{x0 +
n−m∑

i=1

λixi | λi ∈ Z,∀i} ,

where

[x0,x1, . . . ,xn−m] = U

[
B−1b 0

0 I

]
,

which can be found in O(mn) operations.

It is therefore sufficient, in order to solve a system of linear diophantine equations in strongly
polynomial time, to be able to find the Hermite Normal Form of an integer matrix in strongly
polynomial time. We now present an algorithm that, using a GCD-Oracle, computes the
Hermite Normal Form of an integer matrix in strongly polynomial time. The algorithm follows
closely that presented in [Sch87], which in turn is based on [DKT87].

The GCD-Oracle will be used in the following way: for given integers a, b, let

Ua,b =

[
x0 − b

gcd(a,b)

y0
a

gcd(a,b)

]
,

where x0, y0 are returned from the GCD-Oracle.
One can easily verify the following two facts about Ua,b:

Lemma 2.2 For given integers a and b, let Ua,b be as defined above. Then,

1. det(Ua,b) = 1.

2. [a , b]Ua,b = [gcd(a, b) , 0].

The unimodular matrix, Ua,b, allows our algorithm for finding the Hermite Normal Form to
combine O(log(min{a, b})) column operations from the algorithm in [Sch87] into O(1) column
operations, by summarizing the O(log(min{a, b})) column operations in a single matrix. This
is the essence of converting the polynomial time Hermite Normal Form algorithm in [Sch87]
into a strongly polynomial time algorithm.

Given a full row rank integer matrix, A, of dimension m×n, algorithm HNF (see Figure 1)
finds the Hermite Normal Form of A. We use Ai,j to denote the matrix made up of the ith and
jth columns of A. Matrices are named using upper case letters, and we use subscripted lower
case letters to denote a particular entry in a matrix: for example, ai,j refers to the entry in the
ith row and jth column of A.

Theorem 2.1 Using the GCD-Oracle, algorithm HNF finds the Hermite Normal Form of a
full row rank integer matrix, A, in strongly polynomial time. The algorithm performs O(m2n)
operations from the set {+,−,×,/,mod,<}, and makes O(mn) calls to the GCD-Oracle.

Can a System of Linear Diophantine Equations be Solved in Strongly Polynomial Time? 6

Step 1: Augment Matrix
Let ∆ be the absolute value of the determinant of a nonsingular m×m submatrix
of A.
Define D = ∆I, where I is the m-dimensional identity matrix.
Let Ā = [A D]. (The Hermite Normal Form of A is the same as the Hermite
Normal Form of Ā, with the last m columns removed.)
Add integer multiples of the last m columns of Ā to the first n columns of Ā so
that all entries are no more than ∆ in absolute value (i.e. reduce modulo ∆).

Step 2: Triangulate System

for i = 1 .. m do
for j = i+1 .. n+i do

{
(1) Call the GCD-Oracle to find Uāi,i,āi,j ;
(2) Āi,j ← Āi,jUāi,i,āi,j

(i.e. postmultiply columns i and j of Ā by Uāi,i,āi,j ,
to zero out āi,j);

(3) Add integer multiples of the last m− i columns of Ā
to columns i and j so that all entries of Ā remain
bounded by ∆ in magnitude (i.e. reduce modulo ∆) ;
}

Step 3: Bring into Hermite Normal Form
At the end of Step 2, Ā is of the form [B 0], where B is lower triangular.
We must make B nonnegative, with the maximum value for each row on the
diagonal:

for i = 2 .. m do
for j = 1 .. i-1 do

Add an integer multiple of column i to column j
so that bi,j is nonnegative and less than bi,i ;

Step 4: Remove extra columns
Remove the last m columns of Ā.
Output the resulting matrix as the Hermite Normal Form of A.

Figure 1: Algorithm HNF

Can a System of Linear Diophantine Equations be Solved in Strongly Polynomial Time? 7

Proof: We first prove the correctness of the algorithm, followed by a proof that it runs in
strongly polynomial time.

Each column of D can be expressed as an integer linear combination of the columns of
A; it follows that the Hermite Normal Form of A is the same as that of Ā with the last
m columns removed (see [Sch87]). So, we find, in Step 2, the Hermite Normal Form of Ā.
After the completion of line (2) in Step 2, we have zeroed out the (i, j) entry of Ā using the
unimodular matrix returned by the GCD-Oracle (this follows from fact 2 of Lemma 2.2).
It follows that the procedure in Step 2 maintains the invariant that, at the completion
of an iteration of the outer loop, the first i rows of Ā are of the form [Bi 0], where Bi

is lower triangular. Hence, Step 3 is entered with a matrix of the form [B 0], where B
is lower triangular. After each completion of an iteration of the outer loop in Step 3,
the first i rows of B contain nonnegative entries, with each row having it’s largest entry
on the diagonal. Observe that we have only performed elementary column operations
on Ā. This is clear in all but Step 2: in Step 2, we postmultiply columns of Ā by a
unimodular (as previously observed: integer valued, with determinant 1) matrix returned
by the GCD-Oracle, which is equivalent to performing a series of column operations on
Ā. Hence, at the end of Step 3, we are left with the Hermite Normal Form of Ā. By our
earlier remarks, removing the last m columns of the Hermite Normal Form of Ā gives us
the Hermite Normal Form of A.

Having established the validity of the algorithm, we now prove that it has strongly poly-
nomial running time. First we establish that the number of operations is a polynomial
function of m and n: in Step 1, the value ∆ can be found in O(m2n) operations using
Gaussian elimination; in Step 2, we enter the inner loop O(mn) times, each time perform-
ing O(m) operations including a single call to the GCD-Oracle (i.e. we make a total of
O(mn) calls to the GCD-Oracle); Step 3 can be performed using O(m2n) operations. This
establishes that the algorithm performs O(m2n) operations, including O(mn) calls to the
GCD-Oracle. Second, we establish that all operations are performed on polynomial sized
numbers. In Step 1, we augment the original matrix with a matrix with largest entry ∆,
which is a subdeterminant value of A and hence polynomial in the size of the entries of
A; additionally, the size of values produced in the Gaussian elimination are polynomially
bounded in the size of the input. Clearly, then, Ā enters Step 2 with elements polynomial
in the size of the entries of A. In Step 2, the matrix returned by the GCD-Oracle is
polynomial in the size of its inputs; since (3) ensures that our matrix entries are bounded
in magnitude by ∆, the entries of Ā remain polynomially bounded in size. Finally, during
Step 3, it can be seen by induction that the values of the entries in B remain bounded,
in magnitude, by ∆i; hence, the magnitudes of the entries in B never exceed ∆m, which
is polynomial in the size of the input.

We can now prove the main result of this paper.

Theorem 2.2 Suppose that we are given a GCD-Oracle. Then, we can find the set of integer
solutions to the system Ax = b, where A and b have rational entries, in strongly polynomial
time. The algorithm performs O(n3) operations from the set {+,−,×,/,mod,<} and makes
O(n2) calls to the GCD-Oracle.

Can a System of Linear Diophantine Equations be Solved in Strongly Polynomial Time? 8

Proof: First of all, we can perform Gaussian elimination on the system of equations to produce
a system of full row rank in strongly polynomial time (O(m2n) operations). Secondly,
by multiplying each equation by the product of the denominators in the equation (or, by
multiplying each equation by the least common multiple of the denominators, which can
be found in strongly polynomial time by dividing the product of the denominators by the
gcd of the denominators), we can convert the system of equations to contain only integer
valued entries using O(mn) operations. So, without any loss in generality, we can assume
that A is an integer matrix of full row rank and b is an integer column vector. Now, by
Lemma 2.1 and Theorem 2.1, we have shown that with a GCD-Oracle we can determine
the set of integer solutions to the system of equations, Ax = b, in strongly polynomial
time; since algorithm HNF is called with a n × n matrix (see Lemma 2.1), the running
time of our algorithm is O(n3), including O(n2) calls to the GCD-Oracle.

The above theorem, along with Theorem 1.1, establishes that the problem of finding the
set of solutions to a system of linear diophantine equations is strongly polynomial equivalent
to the problem solved by the GCD-Oracle.

3 Additional Remarks

We make a few observations regarding the results in this paper:

1. In Lemma 2.1, we show how to find the unimodular multiplier matrix U , such that
AU = HNF (A): we augment the m×n matrix, A, and find the Hermite Normal Form of
an n × n matrix (requiring O(n3) operations including O(n2) calls to the GCD-Oracle),
from which U can then be calculated. Observe that U is a unimodular matrix that
captures the column operations performed in transforming A to its Hermite Normal Form;
as such, it is also possible to build up U during the execution of algorithm HNF, so that we
only need to calculate the Hermite Normal Form of A (requiring only O(m2n) operations
including O(mn) calls to the GCD-Oracle), rather than the augmented n × n matrix
described in the proof of Lemma 2.1.

2. We have shown that the problem of finding the set of solutions to a system of linear
diophantine equations is strongly polynomial time equivalent to the problem of finding
the gcd of two arbitrary integers, a and b, along with multipliers, x0 and y0, such that
ax0 + by0 = gcd(a, b). We have assumed that our set of operations is {+,−,×,/,mod,<},
so that the strongly polynomial equivalence of the two problems is with respect to this
set of operations. Notice that the only place that we have made use of the mod operation
is in algorithm HNF; hence, exhibiting an algorithm to find the Hermite Normal Form
that does not make use of the mod operation would imply that the two problems are
strongly polynomial reducible to each other with respect to the reduced set of operations,
{+,−,×,/,<}. Indeed, Theorem 1.1 and Lemma 2.1 remain valid with respect to this
reduced set of operations.

3. Our oracle is required to find both the gcd of two integers and the multipliers (x0, y0). It
would be nice to either omit the requirement that the oracle return the multipliers, or,
show that we cannot solve a system of linear diophantine equations in strongly polynomial

Can a System of Linear Diophantine Equations be Solved in Strongly Polynomial Time? 9

time with an oracle that only returns the gcd. A necessary and sufficient condition for the
latter would be to show that we cannot find the multipliers, with an oracle that returns
only the gcd, in strongly polynomial time.

4. Corollary 1.1, using Theorem 1.1, asserts that no strongly polynomial algorithm exists
for the problem of finding the set of solutions to a system of linear diophantine equations.
We can actually make the stronger claim:

Theorem 3.1 No strongly polynomial algorithm exists for the problem of finding any
(single) solution to a system of linear diophantine equations.

Proof: It is a well known result that, given two integers a and b, the equation

ax + by = 1

has an integer valued solution if, and only if, a and b are coprime. Hence, a strongly
polynomial algorithm for finding a solution to a system of linear diophantine equa-
tions could be used to determine, in strongly polynomial time, whether or not two
arbitrary integers are coprime, which we know (see [MST91]) is impossible.

In light of Theorem 3.1, it is clear that no strongly polynomial algorithm exists for the
problem of finding an integer solution to a system of linear inequalities, even if the number
of variables is fixed (note that Theorem 3.1 holds even if the number of variables is fixed
at 2). Lenstra has shown that, for a fixed number of variables, it is possible to find
an integer solution (if one exists) to a set of linear inequalities in polynomial time (see
[Len83]). Perhaps it is possible, however, to give a strongly polynomial algorithm for
finding an integer solution to a set of linear inequalities, with fixed number of variables,
with the help of something like a GCD-Oracle. (Note that a strongly polynomial (linear
time) algorithm does exist for the continuous version of this problem (see [Meg84]).)

5. As we have seen, the fact that no strongly polynomial algorithm exists for coprimality
can be used to establish that no strongly polynomial algorithm exists for other problems.
We give another such example.

Consider the following two-variable integer programming problem, which we will refer to
as a 2-dimensional knapsack problem:

maximize c1x1 + c2x2

s.t.ai1 x1 + ai2x2 ≤ bi, i = 1, 2, . . . , n

x1, x2 ≥ 0, integers ,

where aij , cj , and bi are nonnegative integers. A polynomial algorithm for this problem
when there is only a single constraint (n = 1) is given in [HW76]; a polynomial algorithm
for general n is given in [Kan80].

We show that coprimality is strongly polynomial reducible to an instance of 2-dimensional
knapsack with a single constraint (see Appendix A). Hence, 2 dimensional knapsack, even

Can a System of Linear Diophantine Equations be Solved in Strongly Polynomial Time? 10

when there is a single constraint, cannot be solved in strongly polynomial time. (The
algorithm in [Kan80] has strong resemblance to the Euclidean gcd algorithm; it would
be interesting to see if the availability of something like a gcd oracle would allow for a
strongly polynomial algorithm for 2-dimensional knapsack.)

6. Theorem 1.1 shows that a strongly polynomial algorithm for finding the set of solutions
to a system of linear diophantine equations implies a strongly polynomial algorithm for
finding the gcd of two integers. Suppose, however, one is given an oracle for finding a
single solution to a system of linear diophantine equations. Is it still possible to find, with
this oracle, the gcd of two arbitrary integers in strongly polynomial time?

Along these lines, one can ask many similar questions. For instance, is it possible to find
the gcd of two arbitrary integers in strongly polynomial time with the use of an oracle
that recognizes coprimality?

Can a System of Linear Diophantine Equations be Solved in Strongly Polynomial Time? 11

Appendix

A Lower Bound for 2-Dimensional Knapsack

We show that, as a consequence of the lower bound provided for the coprimality problem
in [MST91], no strongly polynomial algorithm exists for the problem of finding the optimal
solution to a 2-dimensional knapsack problem, in a complexity model allowing the operations
{+,−,×,/,mod,<}. We prove this result by providing a strongly polynomial reduction of the
comprimality decision problem to the 2-dimensional knapsack optimization problem.

Let a and b be positive integers, and let k be a nonnegative integer.
Let (P1) and (P2) be defined as:

(P1) max ax + by

such that ax + by ≤ 2k

x, y integer

(P2) max ax + by

such that ax + by ≤ 2k

x, y ≥ 0 integer

In the next three lemmas, it is assumed that gcd(a, b) 6= 2 (i.e a and b are not both even).

Lemma A.1 ax + by = 2k has an integer solution if and only if a and b are coprime.

Proof: Follows from the fact that gcd(a, b) 6= 2, and that there is a solution if and only if
gcd(a, b) divides into 2k.

Lemma A.2 (P2) has optimal objective value 2k if and only if a and b are coprime.

Proof: Follows immediately from Lemma A.1.

We next show that, for k large enough, we can ensure that there exists an optimal solution
to (P2).

Lemma A.3 Let k = dlog(ab)e. Then, (P2) has optimal objective value 2k if and only if a and
b are coprime.

Proof: From the previous lemma, we know that if a and b are not coprime then the optimal
objective value of (P2) is less than 2k.

Suppose that a and b are coprime. Then ax + by = 2k has a set of solutions of the form,

{(x, y)|(x, y) = (x0 − tb, y0 + ta), t integer} .

This describes the set of optimal solutions for (P1).

Can a System of Linear Diophantine Equations be Solved in Strongly Polynomial Time? 12

Now, we can choose t so that we get a solution (x1, y1) with 0 ≤ x1 < b. If we choose
k so that 2k ≥ ab, it follows that for ax + by = 2k to be satisfied, we must have y1 ≥ 0.
Therefore, if we let k = dlog (ab)e, it follows that for a and b coprime, (P2) has an optimal
objective value of 2k.

Note also that |2k| = k ≤ dlog ae+ dlog be, and is therefore of polynomial size.

We can now establish the following theorem.

Theorem A.1 No strongly polynomial algorithm exist for the 2-dimensional knapsack problem.

Proof: We show that the comprimality decision problem can be reduced to an instance of
2-dimensional knapsack in strongly polynomial time. The theorem will then follow from
the fact there is no strongly polynomial algorithm for determining whether two integers
are coprime.

Suppose we wish to determine if two positive integers a and b are coprime. If a and b
are both even, then we are done as the answer is “no”). Otherwise, consider (P2) with
k = dlog(ab)e. From the previous lemma, we know that this problem has optimal solution
2k if and only if a and b are coprime.

Can a System of Linear Diophantine Equations be Solved in Strongly Polynomial Time? 13

References

[DKT87] P.D. Domich, R. Kannan, and L.E. Trotter. Hermite Normal Form Computation
using Modulo Determinant Arithmetic. Mathematics of Operations Research, 12:50–
59, 1987.

[Edm67] J. Edmonds. Systems of Distinct Representatives and Linear Algebra. Journal of
Research of the National Bureau of Standards (B), 71:241–245, 1967.

[HW76] D. S. Hirschberg and C. K. Wong. A Polynomial Alogirhtm for the Knapsack Problem
in Two Variables. Journal of the Association for Computing Machinery, 23(1):147–
154, January 1976.

[Kan80] R. Kannan. A Polynomial Algorithm for the Two-Variable Integer Programming
Problem. Journal of the Association for Computing Machinery, 27(1):118–122, Jan-
uary 1980.

[Knu81] D. E. Knuth. The Art of Computer Programming, volume 2 (Seminumerical Algo-
rithms). Addison-Wesley, Inc., 2’nd edition, 1981.

[Len83] H. W. Lenstra, Jr. Integer Programming with a Fixed Number of Variables. Mathe-
matics of Operations Research, 8:538–548, 1983.

[Meg84] N. Megiddo. Linear Programming in Linear Time when the Dimension is Fixed.
Journal of the Association for Computing Machinery, 31:114–127, 1984.

[MST91] Y. Mansour, B. Shieber, and P. Tiwari. A Lower Bound for Integer Greatest Com-
mon Divisor Computations. Journal of the Association for Computing Machinery,
38(2):453–471, April 1991.

[Sch87] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, 1987.

[Sto76] L. Stockmeyer. Arithmetic versus Boolean Operations in Idealized Register Machines.
Technical Report RC 5954, IBM T.J. Watson Research Center, Yorktown Heights,
N.Y., April 1976.

