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Abstract

Linear programming problems with up to two nonzeroes per column in the constraint matrix are shown equivalent to
generalized network .ow problem. The transformation is applied for solving the maximum cut problem, the b-matching
problem in strongly polynomial time and for approximation algorithms for certain integer versions of the problem.
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1. Introduction

We consider here a general linear programming
problem on m variables and n constraints where each
column of the n×m matrix A has at most two integer
nonzeroes. We call such problems LP2.

(LP2)

Min cx

s:t: Ax = b

x¿ 0:
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The nonnegativity constraints can be replaced
by general upper and lower bound constraints,
‘i6 xi6 ui for all i, without aBecting the results
reported here. Let U =maxi=1; :::;m{ui − ‘i}.
When the two nonzeroes in each column of the

matrix A are of opposite signs the matrix is called
pre-Leontief. We call such matrix column-monotone
to stress the analogy to the monotone rows (or inequal-
ities) concept. The procedure presented here converts
a nonmonotone LP2 into a column-monotone LP2.
This procedure is a “dual” analogue of the respective
procedure for linear and integer programming prob-
lems on monotone constraints.
The interest in monotonizing a matrix arises

from properties of monotone systems that allow to
solve the respective optimization problem more ef-
Fciently than the nonmonotone system. Consider a
matrix that is row-monotone, that is, each inequality
in the constraint matrix is monotone. An inequal-
ity in two variables is called monotone if it is of
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the form

axji − bxki ¿ c;

where a and b are both nonnegative.
Solving integer programming problems constrained

on a system of monotone inequalities is easier than
solving a general integer programming. Although, as
proved by Lagarias [15], the problem of Fnding a fea-
sible solution of a system of monotone inequalities in
integers is NP-complete, the algorithm of Hochbaum
andNaor [14] Fnds an optimal solution for integer pro-
gramming optimization in n variables over m mono-
tone constraints in time O(mnU 2 log(Un2=m)) where
U is the largest range of a variable. This proves that
the feasibility problem is weakly NP-complete—in
unary representation it is polynomial time solvable.
The gap in complexity between monotone and non-
monotone integer programs is substantial. For exam-
ple, the vertex cover problem is deFned on binary
variables, so that U =1, and the constraints are of the
type xi + xj¿ 1. The vertex cover is a nonmonotone
problem which is strongly NP-complete. The mono-
tone version of vertex cover by contrast is solved in
integers by the algorithm of Hochbaum and Naor in
the complexity of Fnding a minimum cut on a graph
with n nodes and m arcs, O(mn log n2=m).
The monotonicity also aBects the complexity of

the respective linear programming problems. A lin-
ear program on a system of constraints with at most
two variables per inequality is solved for a feasible
solution in strongly polynomial time [14,3], whereas
for general linear programming problem there is no
known strongly polynomial algorithm to Fnd either
feasible or optimal solutions. (An algorithm is said
to be strongly polynomial if its complexity depends
only on the size of the problem and not on the value
of data coeNcients or parameters. For linear program-
ming a strongly polynomial algorithm will have run
time complexity which is a polynomial function of the
number of variables and constraints only).
When the inequalities are monotone, then the set

of feasible solutions forms a lattice in the sense that a
component-wise maximum and component-wise min-
imum of a pair of feasible solutions are also feasible.
The lattice property allows to Fnd an optimal solu-
tion to the linear programming problem LP2 when
all the objective function coeNcients are nonnegative
or when all are nonpositive. This is since the optimal

solution in this case is the unique maximal solu-
tion vector or the unique minimal solution vector.
This optimal (maximal or minimal) solution for the
row-monotone case of linear programming, or the
feasible solution to a nonmonotone linear program-
ming in two variables per constraint, is attained in
strongly polynomial time O(mn2 logm) in [14]. (For
an additional discussion of the lattice properties of
row-monotone problem see [14]).
Hochbaum et al. [13] discuss a transformation that

maps a linear or integer program on nonmonotone in-
equalities in two variables into a respective linear or
integer program on monotone inequalities. Hochbaum
[12] extends this transformation to monotonizing in-
equalities with up to three variables per inequality.
With this transformation, one can solve the monotone
problem Frst and then map back the feasible or optimal
solution to a feasible or superoptimal solution to the
nonmonotone problem. For the integer programming
problem, integer optimal solutions to the monotone
problem are mapped to integer multiples of half so-
lutions to the nonmonotone problem, which are guar-
anteed to have an objective value only better than the
optimal solution—in that sense these are superoptimal
solutions. Both papers [13,12] show how this leads
to 2-approximation algorithms for many intractable
problems.
For column-monotone LP2s the complexity case is

somewhat less compelling than for the row-monotone
problem as we discuss next. The primal-dual rela-
tionship can be exploited to Fnd optimal solutions in
strongly polynomial time for column-monotone LP2s
with right-hand side vector b¿ 0 or b6 0, as shown
by Adler and Cosares [1]. Column-monotone LP2s are
eBectively the generalized network 7ow problem. In
the generalized network .ow problem the .ow on arc
(i; j), fij, is subject to a gain factor of gij at the head
of the arc. That is, a unit .owing from i towards j
arrives at j in the amount gij. The .ow balance con-
straint at node i for a generalized .ow problem is thus
of the form,
∑

j|(i; j)∈A
xij −

∑

k|(k; i)∈A
gkixki = bi:

The constraint matrix for the generalized .ow prob-
lem has in each column one 1 and one −gij. Unlike
the minimum cost .ow problem, where all gainfac-
tors are 1, there are no strongly polynomial algorithms



D.S. Hochbaum /Operations Research Letters 32 (2004) 49–58 51

known for solving the generalized network .ow prob-
lem. Wayne [22] showed how to solve the generalized
.ow problem in O(m3n2 logm logB) using a combina-
torial algorithm (for B the largest integer in the prob-
lem constraints data). There are other, more eNcient
but noncombinatorial, interior point based algorithms
for solving the problem (see [17] for a comprehensive
survey).
As for the integer column-monotone case, even

Fnding a feasible integer solution to the LP2 problem
is NP-hard. To see that consider the decision version
of the minimizing makespan scheduling problem on
unrelated parallel machines. This problem can be rep-
resented as a generalized .ow problem on a bipartite
graph with jobs on one side and machines on the
other. There is one unit demand of each job i which
requires processing time pij on machine j. The deci-
sion problem is to assign jobs to machines (without
preemption) so that the makespan does not exceed a
threshold M . The gain factor on each arc (i; j) in the
bipartite graph is pij and the supply of each machine
node is equal to M . Observe that for the scheduling
problem the graph is bipartite with supplies on one
side, and demands on the other one—namely, it is
a generalized transportation problem (we thank PEva
Tardos for this observation). In that sense the gap
between the column-monotone and nonmonotone
LP2 is smaller than the gap that exists between the
row-monotone and row nonmonotone LP2s.
In order to clarify the type of problems discussed

here we present a typical column for each such prob-
lem in Fig. 1. For problems of type LP2 a column
of the constraint matrix would be of the form (1) in
Fig. 1 without a restriction on the sign of the nonzero
entries a and b. A column is said to be monotone if
it is of the form (2) with a; b¿ 0. A column of type
(3) with g¿ 0 characterizes the constraints of a gen-
eralized network 7ow problem with g the gain factor
for the respective arc corresponding to the .ow vari-
able of that column. It is easy to see that a column of
type (3) can be generated from a column of type (2)
by scaling the variable corresponding to that column
by, say, a. This also implies that g is expressed as the
ratio of two integers. A column of type (4) character-
izes the constraints of the minimum cost network 7ow
problem. The constraint matrix that has at most one
1 and at most one −1 in each column is also totally
unimodular and thus an optimal and basic solution for

Fig. 1. Four types of columns of LP2.

the respective linear programming with b integer is
integer as well. The minimum cost network .ow can
be solved in strongly polynomial time, that is, in run
time depends only on the number of arcs and nodes
in the network.
The contribution here is a formalization of the trans-

formation of a linear program LP2 to a respective
column-monotone linear program LP2M (M stands for
monotone) with twice as many variables and twice as
many constraints. This transformation can be regarded
as a “dual” analogue of the monotonizing transfor-
mation for inequalities with at most two variables in
each [13]. The transformation has the property that an
integer optimal solution to the transformed monotone
LP2M maps to an integer multiple of 12 solution to
the nonmonotone LP2 which is a superoptimal solu-
tion to problem LP2 in integers. That means that the
objective value of this half integral solution is only
better (lower for minimization, higher for maximiza-
tion) than that of the integer optimal solution. This
information is useful in generating tight bounds for
enumerative algorithms, or if some form of rounding
is feasible, it can lead to a 2-approximation solution
to the LP2 problem in integers.
In the case where the nonzero entries of A are 1 or

−1 the algorithm presented here delivers a solution
which is an integer multiple of half and solves the
problem in integers in strongly polynomial time when
the right-hand sides vector b has all even entries. This
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problem is also known as the bidirected network 7ow
problem. This problem was shown by Edmonds [7]
to be equivalent to the b-matching problem, and thus
polynomially solvable. A proof of this equivalence is
given by Lawler ([16], Chapter 6.3). (We are grateful
to Mihalis Yannakakis for pointing out this reference).
This is discussed in more detail in Section 1.1.
In sum, the transformation procedure described here

reduces the general LP2 when the nonzeroes are arbi-
trary integers (or rational numbers) to a generalized
.ow problem, and when the nonzeroes are 1 or −1 it
reduces it to a minimum cost .ow problem.
The remainder of the paper is organized as follows.

The next subsection reviews related transformations
to monotone formulations known in the literature. We
then describe the monotonization transformation algo-
rithm and a heuristic improvement by Fnding maxi-
mal bipartite subgraphs in a corresponding graph. We
conclude with several applications of the monotoniz-
ing transformation:

1. Solving the b-matching problem in strongly poly-
nomial time. This is a case where the nonzero en-
tries of A are all 1. This is equivalent to Anstee’s
approach in [2].

2. Solving eNciently (and in strongly polynomial
time) a relaxation of the maximum cut problem.
This is the case where the nonzero entries of A
are all 1 or −1, namely a bidirected network 7ow
problem. In this case the solution delivered is su-
peroptimal and in integer multiples of 12 , or if all
right-hand sides are even, it is an optimal integer
solution.

3. A strongly polynomial approximation scheme for
LP2.

4. An approximation result for LP2 on nonnegative
matrices with nonnegative right-hand sides that pro-
vides a useful bound for the problem. This is done
by demonstrating a transformation to the general-
ized assignment problem studied by Shmoys and
Tardos [21].

1.1. Related results

Fulkerson et al. [10] devised a transformation for
converting the b-matching problem to a matrix with at
most one 1 and one−1 in each column. There they re-
fer to viewing the adjacency matrix of the b-matching

as a “symmetric matrix”, which represents a (bipar-
tite) transportation problem. This approach was used
by Anstee [2] in order to solve the b-matching prob-
lem. Anstee used the symmetric matrix transformation
to Fnd the optimal fractional b-matching solution and
then round it to an integer solution that is not a per-
fect b-matching, and then apply an algorithm by Pul-
leyblank [19] that uses this solution to Fnd eNciently
the desired perfect b-matching. A similar use of the
procedure is reported in [5,11]. Our procedure can be
viewed as an extension of that procedure.
The problem of bidirected .ows was shown by Ed-

monds [7] to be equivalent to the b-matching problem,
and thus polynomially solvable. In the capacitated case
(with lower and upper bounds on the variables) the
transformation amounts to a factor of 4 increase in the
number of nodes and the number of edges increases
from m to m+ n. Using the transformation of [10] on
the resulting b-matching leads to a representation of
the bidirected .ow problem as a transportation prob-
lem with 8n nodes and 2(m+ n) edges. Note that by
comparison our approach has several advantages: it
is direct and simpler; it leads to a smaller expansion
in the size of the graph; it clariFes the properties of
the polytope which are obscured by the known proce-
dures; and it allows for identifying a maximal bipartite
subgraph which in practice decreases substantially the
size of the minimum cost network .ow problem (see
Section 2.1).
Cohen and Megiddo [4] discuss bidirected gener-

alized .ows in which they represent nonmonotone
columns as two arcs one of which carries a negative
gain. This allows the use of generalized .ow algorithm
for nonmonotone LP2 problems, and is thus implic-
itly a monotonization procedure as well. The proce-
dure we describe maps the LP2 problem to an ordinary
generalized .ow problem without the need to consider
negative gains (a consideration which requires adjust-
ments of existing algorithms).
Hochbaum et al. [13] discuss the monotonization of

inequalities with up to two variables, and Hochbaum
[12] extends this to monotonizing inequalities with
up to three variables per inequality. In the Frst case
this is a 2-factor transformation. In the second case it
is a 2-factor transformation only if the “third” vari-
able appears in one constraint only with a coeNcient
of 1 (otherwise the transformation still applies but
the mapping is an 1=� factor transformation with
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Fig. 2. The doubling of column (i; j) of type (a) (+;+) or (−;−) or, (b) (+;−).

�¿ 2). These results were employed in order to ob-
tain 2-approximation algorithms (and in some cases
�-approximations).

2. Monotonization algorithm

We show here how to transform an LP2 problem
to a column monotone LP2 problem, LP2M, which,
after the appropriate scaling, is a generalized .ow
problem. The transformation involves a factor of 12 in
the inverse map of the solution of the monotone prob-
lem to the solution of the nonmonotone problem. If
the nonzero entries are all 1 or −1, then the proce-
dure reduces the problem to a minimum cost network
.ow problem, which can be solved by eNcient and
strongly polynomial techniques, e.g. Orlin’s [18].
First we assume without loss of generality that the

constraints of a linear program with up to two nonze-
roes per column are all equality constraints: Observe
that if the constraints of LP2 are inequality constraints
then one adds slacks and surplus variables in order
to convert the set of inequalities to equalities. This
does not aBect the structure of the matrix with at most
two nonzeroes per column, as slacks or surpluses are
columns with one 1 or one −1 per column. Therefore,

without loss of generality the constraints (other than
lower and upper bound constraints) may be assumed
to be equality constraints.
Let V={1; : : : ; n} be the set of rows of the matrix A

of the equality constraints. We double the set of rows
V and have a copy V ′ where for each j∈V there is a
copy row index j′ ∈V ′.
Each column of A is characterized by the pair of

rows that contain the nonzero entries in that column.
For each such pair we are only interested in the sign
pattern of the coeNcients, which is either (+;+),
(−;−) or (−;+) (which is same as (+;−). For con-
venience of exposition we refer to a column with
nonzero entries in positions i and j as (i; j). This is
even though (i; j) is not a unique identiFcation of
a column since the same (i; j) can refer to diBerent
columns with diBerent entries in the same pair of
rows.
Consider a (i; j) column with either (+;+) or

(−;−) pattern then we double the column to (i; j′)
and (i′; j). That means that we replace the column
with a in the i position and b in the j position by
two columns with the same entries in the respective
rows, as in Fig. 2. Let cij be the coeNcient of xij
in the objective function. Then we let cij′ = cij and
ci′j = cij.
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Fig. 3. Network representing the generalized .ow problem for a
problem with (i; j) a (+;+) column; (k; l) a (−;−) column; and
(p; q) a (+;−) column.

If (i; j) is (+;−) then we replace it by two columns
(i; j) and (i′; j′). We set ci′j′ = cij.
We now multiply the set of rows V ′ by −1 each.

This has the eBect of reversing the signs of one of
the rows for columns with two identical signs and
retaining the columns with opposite signs with that
property. Notice that for mixed signs columns (+;−)
or (−;+) since both entries are either in V or in V ′

the opposite signs are preserved after multiplying V ′

by −1.
The matrix after the transformation has twice the

number of columns and twice the number of con-
straints as the original matrix A. The signs of the
nonzero elements in each column are opposite. We
now subdivide (that is, scale) each column with en-
tries a;−b by the value of the positive coeNcient,
a. Each column is now of the form 1;−�. After this
scaling the formulation is that of the generalized .ow
network problem. Rows that have positive right-hand
sides are interpreted to be supply nodes and those that
have negative right-hand sides are demand nodes.
The generalized .ow problem can be described

on a graph with the set of nodes corresponding to V on
one side, and the set of nodes corresponding to V ′ on
the other. Fig. 3 illustrates generalized .ow network
resulting from the transformation for three types of

columns. (i; j) is a (+;+) column, (k; ‘) is a (−;−)
column and (p; q) is a (+;−) column. The quantities
gij are the gain factors which for a monotone column
with a in position i and −b in position j is −b=a.
Let the columnmonotone linear programming prob-

lem resulting from the transformation be denoted by
LP2M.

Lemma 2.1. If x is a feasible solution vector for LP2
then xi′j = xij′ = xij is feasible for LP2M. If x̃ is a
feasible solution to LP2M, then xij = (x̃ij′ + x̃i′j)=2
is a feasible solution to LP2.

Proof. Let a row i constraint in LP2 be,
∑

{k;‘}∈Ai
ak;‘xk;‘ = bi;

where Ai is the set of columns that have nonzero entry
in row i. Since x is feasible it satisFes this equation
as well as the equation corresponding to i′ in LP2M,
∑

{k;‘}∈Ai
− ak;‘xk;‘ =−bi = bi′ :

Hence, the setting xi′j=xij′=xij is feasible for LP2M.
Note that {k; ‘}∈Ai means that either k or ‘ is equal
to i.
Now let x̃ be a feasible solution to LP2M, then,
∑

{k;‘}∈Ai
ak;‘x̃k;‘′ = bi;

∑

{k;‘}∈Ai′
− ak;‘x̃k′ ; ‘ =−bi:

Subtracting the second equation from the Frst and
noting that Ai = Ai′ , we get,∑

{k;‘}∈Ai
ak;‘(x̃k;‘′ + x̃k′ ; ‘) = 2bi:

It follows that setting xij = (x̃ij′ + x̃i′j)=2 solves the
equation

∑
{k;‘}∈Ai ak;‘xk;‘ = bi.

Corollary 2.1. The objective value of LP2M and
LP2 are equal under the transformation. In particu-
lar, it follows that the transformation is approxima-
tion preserving.

2.1. A bipartization improvement

Let a matrix A have at most two nozeros per col-
umn. The concept of bipartization for the matrixA is a
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partition of the set of nodes (rows) V into two subsets
that are consistent with all edges and arcs (columns).

De�nition 1. A bipartition of V into V1 ∪ V2 is con-
sistent with the set of columns of a matrix A, if

1. for each (+;+) or (−;−) column (an edge) (i; j),
i and j belong to diBerent sets in the bipartition: if
i∈V1 then j∈V2, and vice versa.

2. for each (+;−) column (i; j), either i; j∈V1 or
i; j∈V2.

With a consistent bipartition we can multiply the set
of equalities in V2 by −1 each and achieve a matrix
where each column has at most one positive nonzero
and at most one negative nonzero.
A simple greedy algorithm delivers a consistent bi-

partition, if one exists, or reports that there is no con-
sistent bipartition. This greedy algorithm is fashioned
after the greedy algorithm of Even et al. [8] for Fnding
a truth assignment, if one exists, to a 2-satisFability
boolean formula, Conjunctive Normal Form (2CNF),
[8]. A sketch of the idea, in terms of our case, is to
assign a boolean value (V1 or V2) to an unassigned
node (row index) v and then “propagate” the impli-
cations until there is either a con.ict, or there is no
further propagation possible. A propagation is to scan
all columns in which a node is newly assigned and to
assign the other node (if there is another nonzero en-
try) as per the type of column in the consistency rules.
A con.ict occurs if there is already an assignment for
one node in a column (i; j) and the other node needs
to be assigned a value violating the consistency rules.
In the latter case, the procedure backtracks to node v
and assigns it the opposite value. If there is still an-
other con.ict, then there is no consistent bipartition.
We modify this greedy to be used to Fnd amaximal

consistent bipartition. Note that Fnding a maximum
number of nodes consistent bipartition is an NP-hard
problem [23]. A maximal bipartition is one that is not
a subset of another bipartition which assigns a strictly
larger set of nodes. The adjustment of the greedy for
maximality is to simply leave unassigned all the nodes
in the propagated sequence starting from vwhich leads
to a con.ict in both possible assignments of v.
At the end of the greedy process there is a partial

assignment of a subset of nodes to V1 and V2. The
remaining columns of the matrix are doubled as in the

original procedure, and when done all rows in V2 are
multiplied by −1. This procedure tends to result in
smaller size of matrices after the transformation.

3. Application to solving w-matching in strongly
polynomial time

One well-known class of LP2 problems is the
w-matching problem also known as the weighted
edge packing problem which is LP2 with both entries
of each column are 1. In this problem each node i
has an integer weight wi associated with it and each
edge {i; j} has a value cij. The problem is to Fnd
integer weights assigned to each edge so that the total
weight of edges adjacent to a node does not exceed
wi and the weighted value of all the edges selected
is maximized. When the weights wi are all 1, this is
the (nonbipartite) maximum weight matching prob-
lem. When the weights are “small” (of polynomial
size in the number of nodes) then we refer to the
problem as the b-matching problem and it can be
solved in (strongly) polynomial time by reducing it
to the 1-matching problem. The question whether the
w-matching problem can be solved in strongly poly-
nomial time (independent of the values of the weights
w) was settled Frst by Anstee [2].
We let the variable xij be the weight assigned to

edge {i; j}. The formulation is

(w-matching)

max
∑

{i; j}∈E
cijxij

s:t:
∑

j|{i; j}∈E
xij6wi; i∈V

xij¿ 0 integer; {i; j}∈E:
The constraint matrix here has two 1’s per column.

With the monotonization transformation the problem
becomes a bipartite minimum cost .ow problem, or
the transportation problem. That problem is solved in
strongly polynomial time, e.g. by the algorithm of Or-
lin [17] in time O(n log n(m+ n log n)). The mapping
back yields a superoptimal solution to the w-matching
problem each component of which is an integer mul-
tiple of 12 .
In the case of w-matching however we have a

stronger result. Firstly, the subdeterminants of an
LP2 {0; 1;−1} matrix are “small”: A matrix is said
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to be separable if there is a partition of the columns
and rows to two subsets (or more) C1; C2 and R1; R2
such that all nonzero entries in every row and col-
umn appear only in the submatrices deFned by the
sets C1 × R1 and C2 × R2. The following lemma of
Hochbaum et al. applies only to nonseparable matri-
ces, since one can construct a separable matrix with
an arbitrary number, K , of nonseparable ones on its
diagonal, each of determinant 2, thus achieving a
matrix with a determinant that is 2K .

Lemma 3.1 (Hochbaum et al. [13], Lemma 6.1).
The determinants of all nonseparable submatrices
of a {0; 1;−1} LP2 matrix have absolute value at
most 2.

A consequence of Lemma 3.1 is that every basic so-
lution has an integer denominator of absolute value at
most 2. (To see that recall that a basic solution is an in-
verse of a submatrix of A multiplied by the right-hand
side vector, and apply Cramer’s rule for the inverse,
which is an integer matrix divided by the scalar 2).
Therefore, if the right-hand sides are all even, then any
basic solution, and in particular an optimal solution
is integer. One can then solve the problem with even
right-hand sides with linear programming to obtain an
optimal integer solution, or better yet, with the mono-
tonization procedure, we can solve the problem with
even right-hand sides in integers in strongly polyno-
mial time using minimum cost transportation problem.
Let the right-hand side vector be w and w′ = 2�w=2�.
Then according to the proximity theorem of Cook et
al. [6], the optimal solution x∗ and the optimal solution
x′ to the system with w′ as right-hand sides satisfy

‖x∗ − x′‖∞6 n!‖w− w′‖∞:
Since the right-hand side ‖w − w′‖∞ is at most 1

and !6 2 this implies,

‖x∗ − x′‖∞6 2n:
Therefore, we use the monotonizing to solve the

problem for w′ in the complexity of minimum cost
network .ow on a bipartite network. The solution x′−
2ne is then a lower bound on the optimal solution. It
thus remains to solve a problem where the weight of
each node is at most 2n. This is an instance of the
b-matching (which is in 0-1 variables) that is solved

in integers in strongly polynomial time by reducing it
to a 1-matching problem [19].

4. Application for solving large maximum cut
problems

The maximum cut problem is to partition the nodes
of an edge weighted graph into two subsets so that the
total weight of the edges with endpoints in diBerent
sets is maximum. Although the minimum cut version
of the problem is polynomially solvable the maximum
cut is a known NP-hard problem. We refer to this
problem as max-cut. The description in this section is
due to Rinaldi [20].
A linear programming relaxation of max-cut (MC)

is the following (for simplicity we assume that the
graph is complete; the extension to general graphs is
quite simple): For each triple of distinct nodes i, j,
and k of the graph, take:

xij + xik + xjk6 2;

xij − xik − xjk6 0;

−xij + xik − xjk6 0;

−xij − xik + xjk6 0:

These inequalities, also called the triangle inequali-
ties, describe the so-called semimetric polytope. Each
of them deFnes a facet of the MC polytope; moreover,
the trivial inequalities xij¿ 0 and xij6 1 are implied
by triangle inequalities thus are redundant and can be
dropped from the formulation. So, solving the relax-
ation over the semimetric polytope provides a bound
for the problem.
Fortunately, the separation problem for all these in-

equalities is trivial as they are O(n3). So, optimizing
over the semimetric polytope provides a polynomially
computable bound for MC.
When the graph is large, say, more than 100 nodes,

then the corresponding linear programming (LP) is
too large to be explicitly represented in an LP solver,
thus we need to optimize with a cutting plane algo-
rithm. However, such an algorithm takes usuallymany
iterations, each LP may get quite hard to solve (even
with state-of-the-art commercial LP codes), and, as a
result, it is out of the question to optimize even for
graphs of 60 nodes in a decent amount of time (using
the Simplex Dual). One can go a bit higher (say, 100
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nodes) with a Barrier code. But also this algorithm
gets into troubles for larger graphs, basically because
of excessive memory requirements.
A diBerent approach is proposed in [9]: all the

triangle inequalities are dualized and the Lagrangian
problem is solved using the bundle method. The
only constraints left are the upper and the lower
bounds. The results are quite good: one can opti-
mize in much shorter time than with Simplex/Barrier
based approaches (with comparable primal/dual error
tolerances) and therefore address larger problems.
The Lagrangian problem however needs to be solved
numerous times in the process.
A better Lagrangian problem can be obtained if,

instead of relaxing all the triangle inequalities, some
of them are left explicitly expressed. In particular, the
inequalities that are not dualized are given by all the
triangles that share a selected root node r:

xri + xrj + xij6 2;

xri − xrj − xij6 0;

−xri + xrj − xij6 0;

−xri − xrj + xij6 0: (1)

These inequalities deFne the so-called rooted semi-
metric polytope. We are interested in optimizing a
linear function over this polytope with a very fast al-
gorithm (that will have to be run over and over during
the execution of the bundle method).
By applying a variable substitution to (1), taking

its dual and applying another variable substitution to
it, one obtains the following linear program:

min
∑

urj +
∑

vij

s:t:

urj +
∑

vij +
∑

k¡j

wkj −
∑

k¿j

wjk¿drj

vij6dij for cij ¿ 0;

wij6dij for cij6 0;

u; v; w¿ 0;

where the cij’s are the MC objective function coeN-
cients and the dij’s depend only on the cij’s.
The u variables are associated with the edges ad-

jacent to the root node r of the graph; the v and the

w variables are associated with the remaining edges
of the graph with positive and nonpositive cij, respec-
tively.
This problem can be seen as a minimum cost .ow

problem in a network with edges (v) and arcs (w).
In other words, this is a bidirected cost .ow problem.
The monotonization transformation maps this prob-
lem into a regular minimum cost .ow problem. As
reported in [9], solving it as a minimum cost network
improves the run time of the Lagrangian and bundle
method substantially and makes it possible to solve
considerably larger instances.

5. Two approximation results

5.1. Strongly polynomial approximation scheme
for LP2

Once the problem is reduced to a generalized
.ow problem, algorithms for solving such prob-
lems can be used to solve LP2M. Thus Wayne’s
O(m3n2 logm logB) combinatorial algorithm can be
used to solve the problem optimally. Wayne [22]
also devised a strongly polynomial approximation
scheme for the generalized .ow problem. A solu-
tion within % of the optimum is obtained in time
O(m2n2 logm log 1% ). This approximation scheme is
directly applicable to LP2 since the transformation is
approximation preserving.

5.2. An approximation algorithm for nonnegative
LP2

Here we show how an approximation result for gen-
eralized assignment is translated into a corresponding
result for nonnegative LP2 that has the matrix A and
the vector b all with nonnegative entries.
Consider the generalized assignment problem. This

is a generalized minimum cost .ow problem deFned
on a bipartite network with one side having supply
nodes and the other demand nodes. Shmoys and Tar-
dos [21] proposed an algorithm that either establishes
that there is no feasible solution of cost C or else it
Fnds a solution of cost at most C which violates the
supply restrictions by a factor 2 at most.
Consider now an LP2 problem in integers with all

right-hand sides b nonnegative and all entries of A
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nonnegative. This means that if the constraints are in-
equality constraints then they must be of packing type
so that setting it up as equalities requires adding slacks,
with coeNcients 1, and it preserves the nonnegativity
of A. For nonnegative problems of this type the appli-
cation of the monotonization algorithm results in an
LP2M problem that has all constraint coeNcients of
the rows in V ′ nonpositive. We scale each column of
LP2M by the positive coeNcient in the row of V . Let
the largest such coeNcient be a.
Next we apply the algorithm of Shmoys and Tardos

which solves the scaled LP2M problem in integers.
When we map back the solution we get a solution of
value not exceeding C but possibly violating the con-
straints by a factor up to 2. The values of the variables
in that solution are rationals with largest denominator
equal to 2a. Notice that a linear programming relax-
ation of the problem would give an optimal solution
with largest denominator as large as the largest sub-
determinant which can be exponentially larger than a
(as large as O(an)). Therefore, the solution provided
by the procedure delivers a tighter bound for the in-
teger problem permitting the factor 2 violation of the
right-hand sides.
Therefore, there is a polynomial time algorithm for

solving the LP2 problem with nonnegative coeNcients
in rationals with largest denominator a and within a
factor of 2 of the right-hand sides.
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