
E L S E V I E R Operations Research Letters 17 (1995) 103-110

A nonlinear Knapsack problem

Dorit S. Hochbaum

School of Business Administration and Department of 1EOR, University of California, Berkeley, CA 94720, USA

Received 1 February 1994; revised 1 May 1994

To the memory of Eugene Lawler

Abstract

The nonlinear Knapsack problem is to maximize a separable concave objective function, subject to a single "packing"
constraint, in nonnegative variables. We consider this problem in integer and continuous variables, and also when the
packing constraint is convex. Although the nonlinear Knapsack problem appears difficult in comparison with the linear
Knapsack problem, we prove that its complexity is similar. We demonstrate for the nonlinear Knapsack problem in
n integer variables and knapsack volume limit B, a fully polynomial approximation scheme with running time
()((1/e 2) (n + l/e2)) (omitting polylog terms); and for the continuous case an algorithm delivering an e-accurate solution
in O(nlog(B/~)) operations.

Keywords: Convex optimization; Fully polynomial approximation scheme; Knapsack problem; Quadratic Knapsack
problem; Allocation problem

O. Introduction

The nonlinear Knapsack problem (NLK) is
a generalization of the well-known integer Knap-
sack problem which maximizes a linear objective
function representing utilities associated with
choosing items (the number of units of item j is
represented by the variable x j) subject to a "pack-
ing" constraint:

max pix j a jx j <~ B, uj >1 x j >i 0 and
(. j = l

x~ integer f o r j = 1 , n~.
)

In its most general form considered here the nonlin-
ear Knapsack problem has the objective separable
concave and the packing constraint separable con-
vex:

Max ~ fj(xj)
j=l

s.t. ~ gj(xj) ~< B, (NLK)
J

O~<xj~<uj, xjinteger, j = 1 , . . . ,n .

The functions J~ are assumed concave and nonde-
creasing, and the functions gj are assumed convex

0167-6377/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved
SSDI 0167-6377(95)00009-7

104 D.S. Hochbaum / Operations Research Letters 17 (1995) 103 l lO

and nondecreasing. Without loss of generality,
B and uj are integers.

There are several complexity issues that arise
when the functions fj and g~ take real values on
integer inputs. In this case, the computation model
assumed is the unit cost model, i.e. any arithmetic
operation or comparison is counted as a single
operation, even if the operands are real numbers.
Another issue is the interpretation of what it means
to solve a problem in reals. Such issues are investi-
gated in Section 2.

Well studied classes of (NLK) are the quadratic
Knapsack with the functions fj quadratic and con-
vex and the functions g~ linear, and the nonlinear
Knapsack problem in which the functions g~ are
linear. Also the continuous version of the problem
is important and comes up in applications such as
production planning [18], marketing [12], capital
budgeting [14] and numerous others.

There is an extensive literature on solution
methods for the nonlinear Knapsack problem and
its special cases, and the few mentioned here form
only a partial list. This literature focuses on cases
where the functions are analytic and differentiable.
For the integer problem, Marsten and Morin [13]
developed a branch-and-bound approach com-
bined with a dynamic programming approach de-
veloped earlier in [16]. Mathur et al. [14] also
developed a branch-and-bound approach. They
noted the representation of the objective function
as a piecewise linear function, but as they were not
aware of an efficient approach to exploit this struc-
ture they dismiss this approach as unlikely to lead
to improved algorithms. This representation is in
fact the key to the algorithms devised here. Using it,
we establish that the continuous solution to the
nonlinear Knapsack problem is solvable efficiently
and in polynomial time.

Ziegler described in [18] an application with
a specific objective function and packing con-
straint. He described for this problem a fully poly-
nomial approximation scheme. We demonstrate
that such an approximation scheme exists for all
instances of (NLK), and that Ziegler's scheme re-
sults as a corrollary of the general case.

Recently, Bretthauer and Shetty [1, 2] described
a branch-and-bound algorithm for the quadratic
case [2], and for the nonlinear case [1]. The

branch-and-bound algorithm is based on solving
the continuous relaxation first. For solving the con-
tinuous problem, they rely on the availability of
derivatives in analytic form, and the solution of
analytic equations. Since solving the continuous
relaxation is itself a challenging problem in their
approach, the algorithm is only applicable to
limited cases of the nonlinear Knapsack problem.

The results reported in this paper indicate that
the complexity of the nonlinear Knapsack problem
is quite close to that of the linear one. We consider
solving optimally the continuous nonlinear Knap-
sack problem and present a fully polynomial ap-
proximation scheme for the (integer) nonlinear
Knapsack.

We use the concept of e-accuracy to solve the
continuous problem. For a prespecified accuracy of
e, a solution is said to be e-accurate if it is at most at
a distance of e (in the L~ norm) from an optimal
solution. In other words, it is identical to the opti-
mum in O(log I/e) significant digits. The continu-
ous problem is shown to be solvable with an e-
accurate solution in time O(n log B/e). This running
time is not possible to improve as it is equal to the
running time for solving the continuous allocation
problem, which is a simple special case of the non-
linear Knapsack problem. In [6] it is proved that
this running time for the allocation problem is
optimal for the comparison model in that it meets
the established lower bound, and cannot be sub-
stantially reduced even for the algebraic tree model
that permits arithmetic operations in addition to
comparisons and branchings and the floor opera-
tion.

Finally, we show an adaptation of the fully poly-
nomial approximation scheme for the linear integer
Knapsack problem, to the nonlinear case as well,
with similar complexity.

We use here a terminology that is common in the
context of the Knapsack problem. An item is said
to be selected if the corresponding variable is set to
one. The objective function coefficients are referred
to as profits, and the single constraint as the pack-
ing constraint. The coefficients in the packing con-
straint are referred to as weights, and the value of
the right-hand side of the constraint, as the Knap-
sack volume. We use boldface letters to denote
vectors, N'N~ denotes the maximum norm and

D.S. Hochbaum / Operations Research Letters 17 (1995) 103-110 105

e denotes the vector of all l's (1 ,1) of compat-
ible dimension. All logarithms are base 2.

In Section 1 we describe the piecewise linear
approximation that is used for the algorithms de-
vised here. Section 2 presents a polynomial algo-
rithm for the continuous nonlinear Knapsack
problem, and in Section 3 we provide the descrip-
tion of the fully polynomial approximation scheme.

1. The piecewise linear approximation

A piecewise linear approximation of the func-
tions fj and the functions #j is used to convert the
nonlinear Knapsack problem (NLK) into a 0/1
Knapsack problem. The integer (NLK) is equiva-
lent to the problem, (PLK), derived by a piecewise
linear approximation on the integer grid. This
is achieved by replacing each variable xj by the
sum of binary variables Y ~ I xlj, and letting
plj =fj(i) - f j (i - 1), and alj = 9j(i) - 9j(i - 1):

uj

Max ~ • pijxij
/=1 i=t

s. t . ~ ~ aijxij ~ B, (PLK)
j = l i=1

xij~{O, 1}, i = l , . . . , u j , j = l , . . . , n .

(PLK) is an ordinary 0/1 Knapsack problem, ex-
cept that the coefficients Pij or aij may not be
integers or rationals. In order for this formulation
to be valid for (NLK) the variables in a solution
vector x~j must satisfy for each given j, that when
ordered as an array (xii , x.j,j), two l's may not
be separated by a 0, or two O's by a 1.

It is easy to see that the concavity of fj and the
convexity of 9j guarantee this condition. It follows
that when a o- and P~i are integers, then techniques
that are used for the 0/1 Knapsack problem are
applicable here as well. There is a known dynamic
programming algorithm for the 0/1 Knapsack
problem:

t N piXj max
L j = I

N

aix j <~ B, xj >1 0 and
j = l

xj integer for j = 1 , N}.

The complexity of solving this 0/1 Knapsack prob-
lem is O (N m i n { B , P*}) for P* denoting the opti-
mal solution value. For this dynamic programming
to work, it is necessary that the objective function
and constraint coefficients are integral. The algo-
rithm runs in O (N B) operations if only the con-
straint coefficients (the weights) are integral. It runs
in time O (N P *) if only the objective function coeffi-
cients are integral. The O (N P *) dynamic program-
ming algorithm is given in Section 3.1.

If the functions gj map integers to integers or
alternatively the functions fj map integers to inte-
gers, then (NLK) is solvable in O(BY~= l uj) steps
(or O(P* y~.= 1 u j) steps), which is the same complex-
ity as the corresponding linear Knapsack problem.

2. Solving the continuous nonlinear Knapsack
problem

The notion of solving a continuous problem is
not well defined for nonlinear problems. The con-
tinuous problem has only been solved in special
cases when the derivatives of the functionsf~ and 9j
exist. Even then it may be impossible to state the
optimal solution accurately. The only case in which
an exact and accurate solution can be obtained is
the quadratic convex optimization problem over
linear or convex quadratic constraints (see, for in-
stance, [10]).

It is not surprising that difficulties are encoun-
tered in the continuous version since the solution
could require infinite representation. For example,
let a simple nonlinear Knapsack problem be given
with f l (x l) = 6xl - x 3 , f z (x 2) = 0, the packing
constraint xl + x2 ~< 2, and the variables are bi-
nary. The optimal solution to this 2 variable prob-
lem is (x/2, 2 - x /~ , which is irrational. The solu-
tion may even lack an algebraic representation,
hence the output does not have a finite length. So
solving a nonlinear problem is challenging even
when the nonlinearities are as simple as poly-
nomials. We therefore use the practical notion of
~-accurate solution (previously used in [7]) to rep-
resent the continuous solution to the problem.
A solution, x ~ is e-accurate if there exists an opti-
mal solution to the continuous problem, x* such
that IIx ~ - x * II~ <~ ~. That is, e is the accuracy

106 D.S. Hochbaum / Operations Research Letters 17 (1995) 103.- 110

required of the solution vector produced, and
[-log l/e7 is the number of significant digits.

Using the notion of e-accuracy, it is possible to
solve some classes of constrained nonlinear optim-
ization in polynomial time [7]. Hochbaum and
Shanthikumar [7] obtained polynomial-time algo-
rithms by using "proximity" results on the distance
between optimal scaled solutions and the continu-
ous optimal solution. (There is also a proximity
result on the distance with respect to the integer
optimal solution, which is not relevant for the non-
linear Knapsack problem.) Hochbaum, in [6],
solved various allocation problems to e-accuracy,
using a different and tighter proximity theorem,
applicable for allocation problems.

The simple allocation problem is closely related to
the Knapsack problem. It differs from it in that the
packing constraint is simpler - a sum of all vari-
ables, whereas for the Knapsack problem it is
a weighted sum of the variables. The algorithms we
develop make use of analysis done for the alloca-
tion problem and its continuous relaxation. The
formulation of the simple allocation problem (SAP)
is as follows:

j = 1 , n, the allocation problem (SAP) is equiva-
lent to finding the largest B entries in the arrays. One
important property of the allocation problem that
follows, is that a greedy algorithm, selecting one
entry at a time according to largest entry value
(function increment), until B entries are selected,
delivers an optimal solution. Although this greedy
algorithm is not polynomial, we shall make use of the
implied property in the derivation of a fully poly-
nomial approximation scheme for the integer (NLK).

Due to the concavity of the functions fj, the
chosen entries form a consecutive array of values
and the last entry selected in array j corresponds to
the integer value of the variable x j, If there are less
than B nonnegative values in the arrays, then the
solution to the (SAP) consists of all the entries with
positive value.

Hochbaum showed in [6] how to obtain an ~-
accurate solution to the continuous relaxation of
the allocation problem (SAP) in O(n log B/e) steps.
This solution is obtained by solving using greedy
the integer problem on a scaled grid and then
relying on a proximity theorem. The scaled prob-
lem is:

(SAP) max ~ Ji(xj)
j ~ l

• xj<~B,
j = l

0 <~ xj <~ uj integer j = 1 n.

The extensive literature on the allocation problem
and its extensions is surveyed in a book by Ibaraki
and Katoh [9].

Frederickson and Johnson [5] (see also [6]) gave
the most efficient algorithm known for the simple
allocation problem. The running time of this algo-
rithm is O(n log B/n). It was proved in [6] that this
running time is optimal with respect to the com-
parison model and is close to the lower bound for
the algebraic tree model. This running time de-
pends linearly on the number of variables, but only
logarithmically on the value of B.

The allocation problem may be viewed as
a problem defined on n arrays of length up to
B each: Given n arrays of nonnegative entries of
function increments, { f j (i) - f j (i - 1) } ~ _ 1, for

.L
max L fj(s. xj)

j = l

B
~ xj<<.-

j = l S

Uj
O<~xj<~--integer j = 1 n.

s

Let the solution to the scaled problem be denoted
by x ~s), and an optimal solution to the continuous
problem x*. The proximity result states that for
any x t~) there exists an optimal continuous solution
x* so that:x* >7 x ~s) - s.c. As a corollary, since the
solution x ~) satisfies x ¢~. e = B,

ilx* -x~'~ll~ <~ n.s.

The result is independent of the grid's uniformity.
Given the problem (PLK) we can represent it as

an allocation array problem. We have n arrays,
where each unit entry corresponding to the variable
x~j is associated with a contribution of pij units to
the objective and ai~ units to the constraint. We
replace such entry by aii entries, each with the value

D.S. Hochbaum / Operations Research Letters 17 (1995) 103 - 110 107

Pij/aij associated with it and a unit contribution to
the constraint. (If aij = 0 then we keep only one
such entry with the value Pij associated with it.
Such a case is unlikely, but if it occurs then the
solution method is easier, as all such variables will
be included.) We then solve the resulting allocation
problem. This transformation corresponds to intro-
ducing new variables, xij = ylj/aij and solving the
integer allocation problem

Max
j = l =L, - - Yij , a,3 "

s.t. ~. Yij = B, (*)
j = l i = l

0 ~< Yij ~< ali,

yijinteger, i = 1 uj j = l n.

Let the vectory* be the optimal solution to (,). Let
Ylj = (1/aOYi* for all i,j. The allocation proximity
theorem implies that

IJx* -.¢11~ ~< n.max .
i j

In order to obtain the e-accuracy we modify the
transformation of variables to, xij = yij/sij where
sij = a J n/e] and duplicate each entry (i, j)sq times.
Although this increases the size of the arrays, it
does not cause an increase in the running time
required to solved the allocation problem (,) as
that depends only on the number of arrays and the
right-hand side value. The right-hand side is also
scaled so that all coefficients are integers:

= Br,,/e-1.
Consequently, the running time is O(nlog B/n)=
O(n log B/e).

In the quadratic Knapsack problem, the func-
tionsfj are quadratic concave and 9~ are linear. The
optimal solution in this case is of polynomial length
in the size of the input, so for e polynomial in the
input size an e-accurate solution is also optimal.

The quadratic continuous Knapsack is known to
be solvable in linear time I-3]. The algorithm given
in this section provides an alternative way for solv-
ing the continuous quadratic Knapsack. For the
specified accuracy e we duplicate each entry 1/eaij
times, e is chosen so that any solution that is e-

accurate is also optimal. The resulting quadratic
allocation problem is solved using the linear time
algorithm in [4].

3. A fully p o l y n o m i a l a p p r o x i m a t i o n s c h e m e

A fully polynomial approximation scheme is
a family of approximation algorithms {A~}, where
algorithm At is an e-approximation algorithm with
relative error bounded by e for all possible problem
instances. In addition, the running time of At
depends polynomially on the input size and on
I/e.

A fully polynomial approximation scheme for
the 0/1 Knapsack problem and the integer Knap-
sack problem was first devised by Ibarra and Kim
[8] and later improved by Lawler [11]. Lawler
further addressed the nonlinear Knapsack problem
as well. The running time of his approximation
scheme depends on ~". u~. This quantity is not

1 = 1
polynomial in the length of the input and hence the
scheme is not polynomial. We demonstrate here
that Lawler's fully polynomial approximation
scheme for the linear Knapsack problem is imple-
mentable for (NLK) in O((1/e 2) (nlog B + log(l/e)
log n + (1/e 2) log(l/e))).

We first present, for the sake of completeness,
the simplest form of the fully polynomial ap-
proximation scheme for the 0/1 Knapsack,
max{57~= lpJxjl N {0, 1} for = •i= 1 ajxj <. B, xj ~ j
1 N}. Following this presentation it is demon-
strated how the operations of this approximation
scheme are to be modified to achieve the same
result for (NLK).

3.1. An O(NP*) algorithm for solving the 0/1 Knap-
sack problem

The following dynamic programming algorithm
solves the problem optimally for integer objective
function coefficients:

Let Fi(i) denote the smallest Knapsack volume that
yields an objective function value of i, involving
variables in the set {1 j}. The boundary condi-
tions are

F j (o) = o , j = 1 N

108 D.£ Hochbaum / Operations Research Letters 17 (1995) 103-110

and the recursive formula is

F~(i) = min{Fj l(i -- pj) q- a j , F j _ l(i)}.

Using the boundary conditions the table of values
is evaluated in increasing order of objective func-
tion values:

FI(1),F2(1),...,FN(1); F1(2) ,FN(2);

The computation terminates once the largest value
of i is found so that FN(i) <<, B. Each function evalu-
ation is done in O(1) steps, and there are a total of
O(NP*) function evaluations, where P* is the opti-
mal value of the objective function. The running
time of this dynamic programming algorithm is
hence O(NP*).

3.2. A fully polynomial approximation scheme for the
0/1 Knapsack

The idea of the fully polynomial approximation
scheme is to exploit the dynamic programming
algorithm that runs in O(NP*). The objective func-
tion coefficients are scaled thus reducing the run-
ning time of the algorithm to depend on the new
scaled value of the optimal solution. On the other
hand, for a carefully chosen scaling value the objec-
tive function of the scaled problem is close to that
of the original problem.

Consider scaling the objective coefficients
by a factor of k. The scaled coefficients are
then pj(k)=[_pj/k~, and the scaled problem,
max{~v= t p~(k)xj [2~= 1 a~x~ <~ B, xj ~ {0, 1} for
j = 1,.. . , N}. The running time required to solve
the scaled problem depends on the value of the
optimum. As the value of the optimal solution gets
reduced by a factor of k so does the running time.
We will be using upper bounds on the optimum
that are also reduced by a factor of k for the scaled
problem. One such simple upper and lower bound
is

/)max ~ P* <~ N'Pmax, (3.1)

where Pr.ax=maxj=~ N P~. With this upper
bound, the running time of the dynamic program-
ming algorithm to solve optimally the scaled prob-
lem is O(N z [Pma~jkJ). We now evaluate the error
bound on the solution delivered by the scaled prob-
lem dynamic programming.

Let S* be the set of indices of the variables in the
optimal solution to the Knapsack problem, and
S(k) the set of indices of the variables in the optimal
solution to the scaled problem.

Z PJ>I Z k[-pHkJ>l ~ kLp~/k-J
j E S(k) j ~ S(k) j E S*

>~ ~ (pi-k)>~ ~ pj-klS*[. (3.2)
jeS* jeS*

Hence, the absolute error of the "scaled" solution is
at most k IS*h, and the relative error (using the
lower bound in (3.1)) is

klS*l k
s = ~ < N - -

Pmax /)max

and the running time is O(N z Pma,jk) = O(Nal/e).
Hence, this is a fully polynomial approximation
scheme.

Applying this fully polynomial approximation
scheme to (NLK) requires setting the objective co-
efficients to integers and then the running time is
O((y~ uj) a l/t) which is not polynomial. Lawler ad-
dressed the nonlinear Knapsack problem explicitly
and describes an approximation scheme imple-

n mented in O(N log N + nN/s), where N = y~j= ~ uj
[1 lJ. As noted before, this approximation scheme is
still not polynomial due to the presence of the
factor of ~ u~.

In order to come up with a polynomial scheme
for (NLK) some finer arguments must be used.
Ibarra and Kim introduced several refinements of
the algorithm involving other bounds on the opti-
mum and the separation of items to a class of
"large" ones versus "small" ones [8]. The large
items are those with profits larger or equal to
a given threshold value T, and the small ones have
profits less than T. They also established that the
error resulting from solving the large items problem
followed by solving the small items problem on the
remaining volume results in an error that is at most
the sum of the errors.

For an improved bound consider the indices
of the variables in the 0/1 Knapsack problem
to be arranged in nonincreasing ratio of pj/a~. Let
] be the largest index so that 3 ~j=laj~<B' Let
Po max{Pmax, J = ~j=lP~}, then Po~<P*~<2Po.
(The proof for the validity of these bounds is found
in [8, 11].)

D.S. Hochbaum / Operations Research Letters 17 (1995) 103-110 109

For a chosen value of e, Lawler [11] defined
1 large items as those with p~ t> T = 2 ePo, and small

items are all the others. The scaling factor selected
1 is k = z e2 Po. The reduced running time is achieved

by running the dynamic programming algorithm
only for the large items. The small items are then
packed in order of nonincreasing pHaj ratio while
there is still slack in the packing constraint. The
total error resulting from the union of these two
sets of selected variables is at most e. To verify that
the total error does not exceed e, note that the total
error derived from the dynamic programming solu-
tion on the large items does not exceed kP*/T as
the number of large items in the optimal solution to
the scaled problem is P*/T. For the small items, the
error does not exceed the value of T. The sum of the
relative errors is hence

1 2 k T ~e Po _ + ½ ~ P o =

T+P---~< ~ e ~ o Po ~"

The computational advantage is derived from the
fact that the total number of large items that needs
to be considered is small. The number of different
values of pj(k) is bounded by P*/k. With the values
of k and T as above, the number of different values
is bounded by 8/~ 2 . As for each value of pj(k), there
could be at most nj = L(P*/k)/p~(k)J items of size
p~(k) in an optimal solution, and among all those of
the same scaled profit, those with the smallest
weights would be selected. Other large items need
not be considered as they are dominated. With this
type of argument, Lawler proved that the number
of large items to be considered is (6/e 2) log2(4/e).
Consequently, the running time required to solve
the dynamic programming algorithm that runs on
large items is O((1/e 4) log2(1/e)).

To summarize, the steps of the approximation
algorithm A~ for the 0/1 linear Knapsack problem
are as follows:

1. Find the value and the set of elements corres-
ponding to Po.

2. Find the "large" items that are candidates for
inclusion in the optimal solution.

3. Solve for the "large" items the scaled problem,
using dynamic programming.

4. Find the largest ratio "small" items that can be
packed in the remaining volume of the Knapsack.

3.3. A fully polynomial approximation scheme for the
nonlinear Knapsack

It remains to show how to implement each one of
the steps of the approximation algorithm A~ so that
it applies to the nonlinear Knapsack problem in
polynomial time: To find the value of Po, we repres-
ent (NLK) as the allocation problem (,) in the
variables Yij = aijx~j. Recall the greedy property of
the allocation problem. For all variables Yij for
a fixed (i,j), the objective coefficients are the same.
Hence, it is always possible to find one optimal
solution in which at most one value ofx~j = y~/aq is
not an integer, but rather a fraction in the interval
(0, 1). From the greedy property, this variable has
the next largest ratio coefficient pi~/a~j among all
unselected items, and the smallest among all se-
lected ones. Hence, when we round it down to 0, we
get precisely the set o f] items of largest ratio. The
maximum of Pmax and the objective function value
corresponding to this rounded down solution, is
the value of Po-

The computationally most expensive step is step
2. There are up to 8/e 2 different profits in the scaled
problem. For each, we need to identify the nj ones
with the least weight, and provide a pointer in each
array to the index of the first such item. We first
compute for each of the 8/e 2 arrays the position of
the pointers. We proceed by computing those
pointers, one at a time in decreasing value of scaled
profits.

Let the current scaled profit for which we search
for the pointers be q. Consider the n arrays of scaled
integer profits. In each array conduct binary search
to determine the first entry of value q or less. Hence,
for each value of q, q = 1, . . . , 8/e 2 the running time
is O(nlogB) for a total of O((1/eZ)nlogB) steps.
Once these pointers are identified we scan the ar-
rays for each value of scaled profit q and record the
up to n~ items with smallest weight and profit q. The
amount of computation required is the total
number of large items O((1/e2)log(1/e)) multiplied
by a factor of logn to maintain a sorted array of
nonincreasing weights. The running time is there-
fore O((1//3 2) 1og2(1/e) log n).

Finally, to pack the largest number of largest
ratio small items, as in step 4, repeat the same
procedure as for step l, and solve the allocation

110 D.S. Hochbaum / Operations Research Letters 17 (1995) 103 110

problem (,) for the small items, rounding down the
one fractional variable resulting in the optimal
solution. The running time of steps 1 and 4 is
dominated by that of steps 2 and 3. Steps 1 and
4 require O(nlog(B/n)) operations each. Step
2 requires O(n(1/e2)logB + (1/~2)log(1/e)logn)
operations. Step 3 requires O((1/e 4) lOgE(1/e))
operations. The total computation time is hence
O((l/e 2) (n log B + log(l/t) log n + (1/E 2) log (l/t))).
For e chosen small enough this running time is the
same as the time required to solve the approxima-
tion scheme for the 0/1 Knapsack problem and is
hence of similar complexity.

References

[1] K. Bretthauer and B. Shetty, "The nonlinear resource
allocation problem", manuscript, Texas A&M University,
1993.

[2] K. Bretthauer, B. Shetty and S. Syam, "'A branch and
bound algorithm for integer quadratic knapsack prob-
lems", Manuscript, Texas A&M University (1993), to ap-
pear in ORSA J. Computing.

[3] P. Brucker, "An O(n) algorithm for quadratic Knapsack
problems", Oper. Res. Lett. 3, 163-166 (1984).

[4] S. Cosares and D.S. Hochbaum, "A strongly polynomial
algorithm for the quadratic transportation problem with
fixed number of suppliers", Math. Oper. Res. 19, 94-111
(1994).

[5] G.N. Frederickson and D.B. Johnson, "'The complexity of
selection and ranking in X + Y and matrices with sorted
columns", J. Comput. Systems Sci. 24, 197-208 (1982).

[6] D.S. Hochbaum, "Lower and upper bounds for the alloca-
tion problem and other nonlinear optimization problems",
Math. Oper. Res. 19, 390-409 (1994).

[7] D.S. Hochbaum and J.G. Shanthikumar, "Convex
separable optimization is not much harder than linear
optimization", J. Assoc. Comput. Mach. 37, 843-862
(1990).

[8] O.H. Ibarra and C.E. Kim, "Fast approximation algo-
rithms for the Knapsack and sum of subset problems", J.
Assoc. Comput. Mach. 22, 463-468 (1975).

[9] T. lbaraki and N. Katoh, Resource Allocation Problems:
Algorithmic Approaches, MIT Press, New York, 1988.

[10] MK. Kozlov, S.P. Tarasov and L.G. Khachian, "Poly-
nomial solvability of convex quadratic programming",
Doklady Akad. Nauk SSR 5, 1051-1053 (1979). [Translated
in Soy. Math. Doklady 20, 1108-1111 (1979).

[11] E. Lawler, "Fast approximation algorithms for Knapsack
problems", Math. Oper. Res. 4, 339-356 (1979).

[12] H. Luss and S.K. Gupta, "Allocation of effort resources
among competing activities", Oper. Res. 23, 360-366
(1975).

[13] R.E. Marsten and T.L. Morin, "A hybrid approach to
discrete mathematical programming", Math. Programming
14, 21-40 (1978).

[14] K. Mathur, H.M. Salkin and S. Morito, "A Branch and
search algorithm for a class of nonlinear Knapsack prob-
lems", Oper. Res. Lett. 2, 155-160 (1983).

[15] S. Martello and P. Toth, Knapsack Problems: Algorithms
and Computer Implementations, Wiley, New York,
1990.

[16] T.L. Morin and R.E. Marsten, "An algorithm for nonlinear
Knapsack problems", Management Sci. 22, 1147-1158
(1976).

[17] E. Tardos, "A strongly polynomial algorithm to solve
combinatorial linear programs", Oper. Res. 34, 250-256
(1986).

[18] H. Ziegler, "Solving certain singly constrained convex op-
timization problems in production planning", Oper. Res.
Lett. 1,246-252 (1982).

