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Abstract 

The nonlinear Knapsack problem is to maximize a separable concave objective function, subject to a single "packing" 
constraint, in nonnegative variables. We consider this problem in integer and continuous variables, and also when the 
packing constraint is convex. Although the nonlinear Knapsack problem appears difficult in comparison with the linear 
Knapsack problem, we prove that its complexity is similar. We demonstrate for the nonlinear Knapsack problem in 
n integer variables and knapsack volume limit B, a fully polynomial approximation scheme with running time 
()((1/e 2) (n + l/e2)) (omitting polylog terms); and for the continuous case an algorithm delivering an e-accurate solution 
in O(nlog(B/~)) operations. 

Keywords: Convex optimization; Fully polynomial approximation scheme; Knapsack problem; Quadratic Knapsack 
problem; Allocation problem 

O. Introduction 

The nonlinear Knapsack problem (NLK) is 
a generalization of the well-known integer Knap- 
sack problem which maximizes a linear objective 
function representing utilities associated with 
choosing items (the number of units of item j is 
represented by the variable x j) subject to a "pack- 
ing" constraint: 

max pix j  a jx j  <~ B, uj >1 x j  >i 0 and 
( . j = l  

x~ integer f o r j  = 1 . . . .  , n~. 
) 

In its most general form considered here the nonlin- 
ear Knapsack problem has the objective separable 
concave and the packing constraint separable con- 
vex: 

Max ~ fj(xj) 
j=l 

s.t. ~ gj(xj) ~< B, (NLK) 
J 

O~<xj~<uj, xjinteger,  j =  1 , . . . ,n .  

The functions J~ are assumed concave and nonde- 
creasing, and the functions gj are assumed convex 
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and nondecreasing. Without loss of generality, 
B and uj are integers. 

There are several complexity issues that arise 
when the functions fj and g~ take real values on 
integer inputs. In this case, the computation model 
assumed is the unit cost model, i.e. any arithmetic 
operation or comparison is counted as a single 
operation, even if the operands are real numbers. 
Another issue is the interpretation of what it means 
to solve a problem in reals. Such issues are investi- 
gated in Section 2. 

Well studied classes of (NLK) are the quadratic 
Knapsack with the functions fj quadratic and con- 
vex and the functions g~ linear, and the nonlinear 
Knapsack problem in which the functions g~ are 
linear. Also the continuous version of the problem 
is important and comes up in applications such as 
production planning [18], marketing [12], capital 
budgeting [14] and numerous others. 

There is an extensive literature on solution 
methods for the nonlinear Knapsack problem and 
its special cases, and the few mentioned here form 
only a partial list. This literature focuses on cases 
where the functions are analytic and differentiable. 
For the integer problem, Marsten and Morin [13] 
developed a branch-and-bound approach com- 
bined with a dynamic programming approach de- 
veloped earlier in [16]. Mathur et al. [14] also 
developed a branch-and-bound approach. They 
noted the representation of the objective function 
as a piecewise linear function, but as they were not 
aware of an efficient approach to exploit this struc- 
ture they dismiss this approach as unlikely to lead 
to improved algorithms. This representation is in 
fact the key to the algorithms devised here. Using it, 
we establish that the continuous solution to the 
nonlinear Knapsack problem is solvable efficiently 
and in polynomial time. 

Ziegler described in [18] an application with 
a specific objective function and packing con- 
straint. He described for this problem a fully poly- 
nomial approximation scheme. We demonstrate 
that such an approximation scheme exists for all 
instances of (NLK), and that Ziegler's scheme re- 
sults as a corrollary of the general case. 

Recently, Bretthauer and Shetty [1, 2] described 
a branch-and-bound algorithm for the quadratic 
case [2], and for the nonlinear case [1]. The 

branch-and-bound algorithm is based on solving 
the continuous relaxation first. For solving the con- 
tinuous problem, they rely on the availability of 
derivatives in analytic form, and the solution of 
analytic equations. Since solving the continuous 
relaxation is itself a challenging problem in their 
approach, the algorithm is only applicable to 
limited cases of the nonlinear Knapsack problem. 

The results reported in this paper indicate that 
the complexity of the nonlinear Knapsack problem 
is quite close to that of the linear one. We consider 
solving optimally the continuous nonlinear Knap- 
sack problem and present a fully polynomial ap- 
proximation scheme for the (integer) nonlinear 
Knapsack. 

We use the concept of e-accuracy to solve the 
continuous problem. For a prespecified accuracy of 
e, a solution is said to be e-accurate if it is at most at 
a distance of e (in the L~ norm) from an optimal 
solution. In other words, it is identical to the opti- 
mum in O(log I/e) significant digits. The continu- 
ous problem is shown to be solvable with an e- 
accurate solution in time O(n log B/e). This running 
time is not possible to improve as it is equal to the 
running time for solving the continuous allocation 
problem, which is a simple special case of the non- 
linear Knapsack problem. In [6] it is proved that 
this running time for the allocation problem is 
optimal for the comparison model in that it meets 
the established lower bound, and cannot be sub- 
stantially reduced even for the algebraic tree model 
that permits arithmetic operations in addition to 
comparisons and branchings and the floor opera- 
tion. 

Finally, we show an adaptation of the fully poly- 
nomial approximation scheme for the linear integer 
Knapsack problem, to the nonlinear case as well, 
with similar complexity. 

We use here a terminology that is common in the 
context of the Knapsack problem. An item is said 
to be selected if the corresponding variable is set to 
one. The objective function coefficients are referred 
to as profits, and the single constraint as the pack- 
ing constraint. The coefficients in the packing con- 
straint are referred to as weights, and the value of 
the right-hand side of the constraint, as the Knap- 
sack volume. We use boldface letters to denote 
vectors, N'N~ denotes the maximum norm and 
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e denotes the vector of all l's (1 . . . .  ,1) of compat- 
ible dimension. All logarithms are base 2. 

In Section 1 we describe the piecewise linear 
approximation that is used for the algorithms de- 
vised here. Section 2 presents a polynomial algo- 
rithm for the continuous nonlinear Knapsack 
problem, and in Section 3 we provide the descrip- 
tion of the fully polynomial approximation scheme. 

1. The piecewise linear approximation 

A piecewise linear approximation of the func- 
tions fj and the functions #j is used to convert the 
nonlinear Knapsack problem (NLK) into a 0/1 
Knapsack problem. The integer (NLK) is equiva- 
lent to the problem, (PLK), derived by a piecewise 
linear approximation on the integer grid. This 
is achieved by replacing each variable xj by the 
sum of binary variables Y ~ I  xlj, and letting 
plj =fj(i) - f j ( i  - 1), and alj = 9j(i) - 9j(i - 1): 

uj 

Max ~ • pijxij 
/=1 i=t 

s. t .  ~ ~ aijxij ~ B, (PLK) 
j = l  i=1  

xij~{O, 1}, i = l , . . . , u j ,  j = l , . . . , n .  

(PLK) is an ordinary 0/1 Knapsack problem, ex- 
cept that the coefficients Pij or aij may not be 
integers or rationals. In order for this formulation 
to be valid for (NLK) the variables in a solution 
vector x~j must satisfy for each given j, that when 
ordered as an array (xii . . . .  , x.j,j), two l's may not 
be separated by a 0, or two O's by a 1. 

It is easy to see that the concavity of fj and the 
convexity of 9j guarantee this condition. It follows 
that when a o- and P~i are integers, then techniques 
that are used for the 0/1 Knapsack problem are 
applicable here as well. There is a known dynamic 
programming algorithm for the 0/1 Knapsack 
problem: 

t N piXj max 
L j = I  

N 

aix j <~ B, xj  >1 0 and 
j = l  

xj integer for j = 1 . . . .  , N}. 

The complexity of solving this 0/1 Knapsack prob- 
lem is O ( N m i n { B ,  P*}) for P* denoting the opti- 
mal solution value. For this dynamic programming 
to work, it is necessary that the objective function 
and constraint coefficients are integral. The algo- 
rithm runs in O ( N B )  operations if only the con- 
straint coefficients (the weights) are integral. It runs 
in time O ( N P * )  if only the objective function coeffi- 
cients are integral. The O ( N P * )  dynamic program- 
ming algorithm is given in Section 3.1. 

If the functions gj map integers to integers or 
alternatively the functions fj map integers to inte- 
gers, then (NLK) is solvable in O(BY~= l uj) steps 
(or O(P* y~.= 1 u j) steps), which is the same complex- 
ity as the corresponding linear Knapsack problem. 

2. Solving the continuous nonlinear Knapsack 
problem 

The notion of solving a continuous problem is 
not well defined for nonlinear problems. The con- 
tinuous problem has only been solved in special 
cases when the derivatives of the functionsf~ and 9j 
exist. Even then it may be impossible to state the 
optimal solution accurately. The only case in which 
an exact and accurate solution can be obtained is 
the quadratic convex optimization problem over 
linear or convex quadratic constraints (see, for in- 
stance, [ 10]). 

It is not surprising that difficulties are encoun- 
tered in the continuous version since the solution 
could require infinite representation. For example, 
let a simple nonlinear Knapsack problem be given 
with f l ( x l )  = 6xl - x 3 , f z ( x 2 )  = 0, the packing 
constraint xl + x2 ~< 2, and the variables are bi- 
nary. The optimal solution to this 2 variable prob- 
lem is (x/2, 2 - x /~ ,  which is irrational. The solu- 
tion may even lack an algebraic representation, 
hence the output does not have a finite length. So 
solving a nonlinear problem is challenging even 
when the nonlinearities are as simple as poly- 
nomials. We therefore use the practical notion of 
~-accurate solution (previously used in [7]) to rep- 
resent the continuous solution to the problem. 
A solution, x ~ is e-accurate if there exists an opti- 
mal solution to the continuous problem, x* such 
that IIx ~ - x *  II~ <~ ~. That is, e is the accuracy 
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required of the solution vector produced, and 
[-log l/e7 is the number of significant digits. 

Using the notion of e-accuracy, it is possible to 
solve some classes of constrained nonlinear optim- 
ization in polynomial time [7]. Hochbaum and 
Shanthikumar [7] obtained polynomial-time algo- 
rithms by using "proximity" results on the distance 
between optimal scaled solutions and the continu- 
ous optimal solution. (There is also a proximity 
result on the distance with respect to the integer 
optimal solution, which is not relevant for the non- 
linear Knapsack problem.) Hochbaum, in [6], 
solved various allocation problems to e-accuracy, 
using a different and tighter proximity theorem, 
applicable for allocation problems. 

The simple allocation problem is closely related to 
the Knapsack problem. It differs from it in that the 
packing constraint is simpler - a sum of all vari- 
ables, whereas for the Knapsack problem it is 
a weighted sum of the variables. The algorithms we 
develop make use of analysis done for the alloca- 
tion problem and its continuous relaxation. The 
formulation of the simple allocation problem (SAP) 
is as follows: 

j = 1 . . . .  , n, the allocation problem (SAP) is equiva- 
lent to finding the largest B entries in the arrays. One 
important property of the allocation problem that 
follows, is that a greedy algorithm, selecting one 
entry at a time according to largest entry value 
(function increment), until B entries are selected, 
delivers an optimal solution. Although this greedy 
algorithm is not polynomial, we shall make use of the 
implied property in the derivation of a fully poly- 
nomial approximation scheme for the integer (NLK). 

Due to the concavity of the functions fj, the 
chosen entries form a consecutive array of values 
and the last entry selected in array j corresponds to 
the integer value of the variable x j, If there are less 
than B nonnegative values in the arrays, then the 
solution to the (SAP) consists of all the entries with 
positive value. 

Hochbaum showed in [6] how to obtain an ~- 
accurate solution to the continuous relaxation of 
the allocation problem (SAP) in O(n log B/e) steps. 
This solution is obtained by solving using greedy 
the integer problem on a scaled grid and then 
relying on a proximity theorem. The scaled prob- 
lem is: 

(SAP) max ~ Ji(xj) 
j ~ l  

• xj<~B, 
j = l  

0 <~ xj <~ uj integer j = 1 . . . . .  n. 

The extensive literature on the allocation problem 
and its extensions is surveyed in a book by Ibaraki 
and Katoh [9]. 

Frederickson and Johnson [5] (see also [6] ) gave 
the most efficient algorithm known for the simple 
allocation problem. The running time of this algo- 
rithm is O(n log B/n). It was proved in [6] that this 
running time is optimal with respect to the com- 
parison model and is close to the lower bound for 
the algebraic tree model. This running time de- 
pends linearly on the number of variables, but only 
logarithmically on the value of B. 

The allocation problem may be viewed as 
a problem defined on n arrays of length up to 
B each: Given n arrays of nonnegative entries of 
function increments, { f j ( i ) - f j ( i - 1 ) } ~ _  1, for 

.L 
max L fj(s. xj) 

j = l  

B 
~ xj<<.- 

j = l  S 

Uj 
O<~xj<~--integer j =  1 . . . . .  n. 

s 

Let the solution to the scaled problem be denoted 
by x ~s), and an optimal solution to the continuous 
problem x*. The proximity result states that for 
any x t~) there exists an optimal continuous solution 
x* so that:x* >7 x ~s) - s.c. As a corollary, since the 
solution x ~) satisfies x ¢~. e = B, 

ilx* -x~'~ll~ <~ n.s. 

The result is independent of the grid's uniformity. 
Given the problem (PLK) we can represent it as 

an allocation array problem. We have n arrays, 
where each unit entry corresponding to the variable 
x~j is associated with a contribution of pij units to 
the objective and ai~ units to the constraint. We 
replace such entry by aii entries, each with the value 
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Pij/aij associated with it and a unit contribution to 
the constraint. (If aij = 0 then we keep only one 
such entry with the value Pij associated with it. 
Such a case is unlikely, but if it occurs then the 
solution method is easier, as all such variables will 
be included.) We then solve the resulting allocation 
problem. This transformation corresponds to intro- 
ducing new variables, xij = ylj/aij and solving the 
integer allocation problem 

Max 
j = l  =L, - -  Yij , a,3 " 

s.t. ~. Yij = B, (*) 
j = l  i = l  

0 ~< Yij ~< ali, 

yijinteger, i =  1 . . . . .  uj j = l  . . . . .  n. 

Let the vectory* be the optimal solution to (,). Let 
Ylj = (1/aOYi* for all i,j. The allocation proximity 
theorem implies that 

IJx* -.¢11~ ~< n.max . 
i j  

In order to obtain the e-accuracy we modify the 
transformation of variables to, xij = yij/sij where 
sij = a J  n/e ] and duplicate each entry (i, j )sq times. 
Although this increases the size of the arrays, it 
does not cause an increase in the running time 
required to solved the allocation problem (,) as 
that depends only on the number of arrays and the 
right-hand side value. The right-hand side is also 
scaled so that all coefficients are integers: 

= Br,,/e-1. 
Consequently, the running time is O(nlog B/n)= 
O(n log B/e). 

In the quadratic Knapsack problem, the func- 
tionsfj are quadratic concave and 9~ are linear. The 
optimal solution in this case is of polynomial length 
in the size of the input, so for e polynomial in the 
input size an e-accurate solution is also optimal. 

The quadratic continuous Knapsack is known to 
be solvable in linear time I-3]. The algorithm given 
in this section provides an alternative way for solv- 
ing the continuous quadratic Knapsack. For the 
specified accuracy e we duplicate each entry 1/eaij 
times, e is chosen so that any solution that is e- 

accurate is also optimal. The resulting quadratic 
allocation problem is solved using the linear time 
algorithm in [4]. 

3. A fully p o l y n o m i a l  a p p r o x i m a t i o n  s c h e m e  

A fully polynomial approximation scheme is 
a family of approximation algorithms {A~}, where 
algorithm At is an e-approximation algorithm with 
relative error bounded by e for all possible problem 
instances. In addition, the running time of At 
depends polynomially on the input size and on 
I/e. 

A fully polynomial approximation scheme for 
the 0/1 Knapsack problem and the integer Knap- 
sack problem was first devised by Ibarra and Kim 
[8] and later improved by Lawler [11]. Lawler 
further addressed the nonlinear Knapsack problem 
as well. The running time of his approximation 
scheme depends on ~". u~. This quantity is not 

1 = 1  
polynomial in the length of the input and hence the 
scheme is not polynomial. We demonstrate here 
that Lawler's fully polynomial approximation 
scheme for the linear Knapsack problem is imple- 
mentable for (NLK) in O((1/e 2) (nlog B + log(l/e) 
log n + ( 1/e 2) log(l/e))). 

We first present, for the sake of completeness, 
the simplest form of the fully polynomial ap- 
proximation scheme for the 0/1 Knapsack, 
max{57~= lpJxjl N {0, 1} for = •i= 1 ajxj <. B, xj ~ j 
1 . . . . .  N}. Following this presentation it is demon- 
strated how the operations of this approximation 
scheme are to be modified to achieve the same 
result for (NLK). 

3.1. An O(NP*) algorithm for  solving the 0/1 Knap- 
sack problem 

The following dynamic programming algorithm 
solves the problem optimally for integer objective 
function coefficients: 

Let Fi(i) denote the smallest Knapsack volume that 
yields an objective function value of i, involving 
variables in the set {1 . . . . .  j}. The boundary condi- 
tions are 

F j ( o )  = o ,  j = 1 . . . . .  N 
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and the recursive formula is 

F~(i) = min{Fj l(i --  pj)  q- a j ,  F j _  l(i)}. 

Using the boundary conditions the table of values 
is evaluated in increasing order of objective func- 
tion values: 

FI(1),F2(1),...,FN(1); F1(2) .. . .  ,FN(2); .... 

The computation terminates once the largest value 
of i is found so that FN(i) <<, B. Each function evalu- 
ation is done in O(1) steps, and there are a total of 
O(NP*) function evaluations, where P* is the opti- 
mal value of the objective function. The running 
time of this dynamic programming algorithm is 
hence O(NP*). 

3.2. A fully polynomial approximation scheme for the 
0/1 Knapsack 

The idea of the fully polynomial approximation 
scheme is to exploit the dynamic programming 
algorithm that runs in O(NP*). The objective func- 
tion coefficients are scaled thus reducing the run- 
ning time of the algorithm to depend on the new 
scaled value of the optimal solution. On the other 
hand, for a carefully chosen scaling value the objec- 
tive function of the scaled problem is close to that 
of the original problem. 

Consider scaling the objective coefficients 
by a factor of k. The scaled coefficients are 
then pj(k)=[_pj/k~, and the scaled problem, 
max{~v= t p~(k)xj [2~= 1 a~x~ <~ B, xj ~ {0, 1} for 
j = 1,.. . ,  N}. The running time required to solve 
the scaled problem depends on the value of the 
optimum. As the value of the optimal solution gets 
reduced by a factor of k so does the running time. 
We will be using upper bounds on the optimum 
that are also reduced by a factor of k for the scaled 
problem. One such simple upper and lower bound 
is 

/)max ~ P* <~ N'Pmax, (3.1) 

where Pr.ax=maxj=~ ..... N P~. With this upper 
bound, the running time of the dynamic program- 
ming algorithm to solve optimally the scaled prob- 
lem is O(N z [ Pma~jkJ). We now evaluate the error 
bound on the solution delivered by the scaled prob- 
lem dynamic programming. 

Let S* be the set of indices of the variables in the 
optimal solution to the Knapsack problem, and 
S(k) the set of indices of the variables in the optimal 
solution to the scaled problem. 

Z PJ>I Z k[-pHkJ>l ~ kLp~/k-J 
j E S(k) j ~ S(k) j E S* 

>~ ~ (pi-k)>~ ~ pj-klS*[.  (3.2) 
jeS* jeS* 

Hence, the absolute error of the "scaled" solution is 
at most k IS*h, and the relative error (using the 
lower bound in (3.1)) is 

klS*l k 
s =  ~ < N - -  

Pmax /)max 

and the running time is O(N z Pma,jk) = O(Nal/e). 
Hence, this is a fully polynomial approximation 
scheme. 

Applying this fully polynomial approximation 
scheme to (NLK) requires setting the objective co- 
efficients to integers and then the running time is 
O((y~ uj) a l/t) which is not polynomial. Lawler ad- 
dressed the nonlinear Knapsack problem explicitly 
and describes an approximation scheme imple- 

n mented in O(N log N + nN/s), where N = y~j= ~ uj 
[1 lJ. As noted before, this approximation scheme is 
still not polynomial due to the presence of the 
factor of ~ u~. 

In order to come up with a polynomial scheme 
for (NLK) some finer arguments must be used. 
Ibarra and Kim introduced several refinements of 
the algorithm involving other bounds on the opti- 
mum and the separation of items to a class of 
"large" ones versus "small" ones [8]. The large 
items are those with profits larger or equal to 
a given threshold value T, and the small ones have 
profits less than T. They also established that the 
error resulting from solving the large items problem 
followed by solving the small items problem on the 
remaining volume results in an error that is at most 
the sum of the errors. 

For an improved bound consider the indices 
of the variables in the 0/1 Knapsack problem 
to be arranged in nonincreasing ratio of pj/a~. Let 
] be the largest index so that 3 ~j=laj~<B'  Let 
Po max{Pmax, J = ~j=lP~}, then Po~<P*~<2Po. 
(The proof for the validity of these bounds is found 
in [8, 11].) 
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For a chosen value of e, Lawler [11] defined 
1 large items as those with p~ t> T = 2 ePo, and small 

items are all the others. The scaling factor selected 
1 is k = z e2 Po. The reduced running time is achieved 

by running the dynamic programming algorithm 
only for the large items. The small items are then 
packed in order of nonincreasing pHaj ratio while 
there is still slack in the packing constraint. The 
total error resulting from the union of these two 
sets of selected variables is at most e. To verify that 
the total error does not exceed e, note that the total 
error derived from the dynamic programming solu- 
tion on the large items does not exceed kP*/T as 
the number of large items in the optimal solution to 
the scaled problem is P*/T. For the small items, the 
error does not exceed the value of T. The sum of the 
relative errors is hence 

1 2 k T ~e Po _ + ½ ~ P o  = 

T+P---~< ~ e ~ o  Po ~" 

The computational advantage is derived from the 
fact that the total number of large items that needs 
to be considered is small. The number of different 
values of pj(k) is bounded by P*/k. With the values 
of k and T as above, the number of different values 
is bounded by 8/~ 2 . As for each value of pj(k), there 
could be at most nj = L(P*/k)/p~(k)J items of size 
p~(k) in an optimal solution, and among all those of 
the same scaled profit, those with the smallest 
weights would be selected. Other large items need 
not be considered as they are dominated. With this 
type of argument, Lawler proved that the number 
of large items to be considered is (6/e 2) log2(4/e). 
Consequently, the running time required to solve 
the dynamic programming algorithm that runs on 
large items is O((1/e 4) log2(1/e)). 

To summarize, the steps of the approximation 
algorithm A~ for the 0/1 linear Knapsack problem 
are as follows: 

1. Find the value and the set of elements corres- 
ponding to Po. 

2. Find the "large" items that are candidates for 
inclusion in the optimal solution. 

3. Solve for the "large" items the scaled problem, 
using dynamic programming. 

4. Find the largest ratio "small" items that can be 
packed in the remaining volume of the Knapsack. 

3.3. A fully polynomial approximation scheme for the 
nonlinear Knapsack 

It remains to show how to implement each one of 
the steps of the approximation algorithm A~ so that 
it applies to the nonlinear Knapsack problem in 
polynomial time: To find the value of Po, we repres- 
ent (NLK) as the allocation problem (,) in the 
variables Yij = aijx~j. Recall the greedy property of 
the allocation problem. For  all variables Yij for 
a fixed (i,j), the objective coefficients are the same. 
Hence, it is always possible to find one optimal 
solution in which at most one value ofx~j = y~/aq is 
not an integer, but rather a fraction in the interval 
(0, 1). From the greedy property, this variable has 
the next largest ratio coefficient pi~/a~j among all 
unselected items, and the smallest among all se- 
lected ones. Hence, when we round it down to 0, we 
get precisely the set o f ]  items of largest ratio. The 
maximum of Pmax and the objective function value 
corresponding to this rounded down solution, is 
the value of Po- 

The computationally most expensive step is step 
2. There are up to 8/e 2 different profits in the scaled 
problem. For  each, we need to identify the nj ones 
with the least weight, and provide a pointer in each 
array to the index of the first such item. We first 
compute for each of the 8/e 2 arrays the position of 
the pointers. We proceed by computing those 
pointers, one at a time in decreasing value of scaled 
profits. 

Let the current scaled profit for which we search 
for the pointers be q. Consider the n arrays of scaled 
integer profits. In each array conduct binary search 
to determine the first entry of value q or less. Hence, 
for each value of q, q = 1, . . . ,  8/e 2 the running time 
is O(nlogB) for a total of O((1/eZ)nlogB) steps. 
Once these pointers are identified we scan the ar- 
rays for each value of scaled profit q and record the 
up to n~ items with smallest weight and profit q. The 
amount of computation required is the total 
number of large items O((1/e2)log(1/e)) multiplied 
by a factor of logn to maintain a sorted array of 
nonincreasing weights. The running time is there- 
fore O((1//3 2) 1og2(1/e) log n). 

Finally, to pack the largest number of largest 
ratio small items, as in step 4, repeat the same 
procedure as for step l, and solve the allocation 
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problem (,) for the small items, rounding down the 
one fractional variable resulting in the optimal 
solution. The running time of steps 1 and 4 is 
dominated by that of steps 2 and 3. Steps 1 and 
4 require O(nlog(B/n)) operations each. Step 
2 requires O(n(1/e2)logB + (1/~2)log(1/e)logn) 
operations. Step 3 requires O((1/e 4) lOgE(1/e)) 
operations. The total computation time is hence 
O((l/e 2) (n log B + log(l/t) log n + (1/E 2) log (l/t))). 
For e chosen small enough this running time is the 
same as the time required to solve the approxima- 
tion scheme for the 0/1 Knapsack problem and is 
hence of similar complexity. 
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