Downloaded 03/11/19 to 67.169.12.101. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SIAM J. ALG. DISC. METH. © 1985 Society for Industrial and Applied Mathematics
Vol. 6, No. 4, October 1985 016

AN O(]VP) ALGORITHM FOR THE PLANAR 3-CUT PROBLEM*

DORIT S. HOCHBAUMt aND DAVID B. SHMOYS#

Abstract. A 3-cut for a connected graph G is a set of edges which, when deleted, separate G into 3
components. In this paper we present an O(] V|?) algorithm to find the minimum 3-cut for a planar graph G.

AMS(MOS) subject classifications. F.2.2., G.2.1., G2.2

Given a connected (simple) graph G =(V, E), a k-cut is a subset of edges E; such
that the graph G, =(V, E — E,) contains exactly k components. The problem of finding
the smallest 3-cut is interesting, not only as an extension of the ordinary minimum
(2-)cut problem, but also because of applications in cutting plane methods for the
traveling salesperson problem. In this paper we present a polynomial-time algorithm
to find a minimum size 3-cut for planar graphs. It is easy to see that the 3-cut problem
is polynomial for planar graphs; since the minimum degree of a planar graph is at
most five, there is a trivial cut of size 10. To find the minimum cut we can simply
check all subsets of edges of size less than 10. To simplify notation, for a graph
G=(V, E), |G| will be used to denote |E|; note that for a planar graph |G|= O(|V|).
Thus, the simple enumerative algorithm requires O(|G|'°) time. In this paper we present
a simple efficient algorithm that requires only O(|G|*) time.

One simple approach for finding an optimal 3-cut that might be considered is the
greedy approach; that is, choose a triple of vertices (v,, v, v;). First find a minimum
(2-)cut between v; and v,. This cut leaves v; in a component with either v, or v,;
suppose, without loss of generality, that v, lies in the same component as v;. Next
find the minimum cut in this component between v, and v;. This yields a 3-cut, but
is it an optimal one? A further extension of this would be to try this greedy heuristic
for all ordered triples of vertices. Unfortunately, even in the planar case, this procedure
does not yield this optimum solution. Consider the graph given in Fig. 1. The minimum
3-cut is the set of six edges separating the three square-like sets of four vertices
each. Attempting to find such a cut by enumerating all possible triples of vertices, we
check the triple (v, v,, v;) given in Fig. 1. Suppose that we find a minimum 2-cut

V3

V2

\¢

Fig. 1

* Received by the editors November 15, 1983, and in revised form June 28, 1984.

+ School of Business Administration, University of California, Berkeley, California 94720. The research
of this author was supported in part by the National Science Foundation under grant ECS-8204695.

t Department of Computer Science, Harvard University, Cambridge, Massachusetts 02138. The research
of this author was supported in part by the National Science Foundation by a graduate fellowship and
under grant MCS-8311422, and in part by DARPA order 4031, monitored by Naval Electronic System
Command under contract N00039-C-0235.

707

Downloaded 03/11/19 to 67.169.12.101. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

708 DORIT S. HOCHBAUM AND DAVID B. SHMOYS

between v, and v,; one such cut consists of the four edges incident to v,. Now find a
minimum cut between v, and v,; this cut consists of the three remaining edges incident
to v,. In total, we have found a 3-cut of size seven. By a careful examination of all
cases, it is straightforward to verify that for any choice of 3 vertices, there is a cut that
can be the result of this approach that is not optimal.

We will solve the minimum 3-cut problem in G by solving the corresponding
problem in G*, the dual graph of G. Note that the dual graph G* might not be a
simple graph; both self-loops and multiple edges can occur.

Recall that for a planar graph G, there is a 1-1 correspondence between 2-cuts in
G and cycles in G*; we want to generalize this idea. A cycle is a minimal graph with
2 faces. For each face of a subgraph of G*, there are some vertices of G that are
“contained” in that face that are separated from vertices ‘“‘contained” in the other
faces of the subgraph. This leads us to make the following observation.

Observation. G has a 3-cut of size k if and only if G* contains a subgraph H
with exactly three faces such that H has k edges.

Since G* can be found in O(|G|) time, we will focus attention on the problem
of finding a minimum size subgraph with 3 faces. Thus, for the remainder of the paper,
we will assume that we are given both G*, and an embedding of it. We begin by
examining the structure of possible optimal solutions. First of all, the optimal subgraph
H may or may not be connected. Suppose that H is disconnected; since it contains
exactly three faces, it must be precisely two disjoint cycles (see Fig. 2(a)). If H is
connected then for a given embedding either the boundary of the exterior face includes
all of the edges of H or it does not. By considering these cases separately, it is not
hard to see that H must be one of the configurations depicted in Fig. 2(b) and 2(c).

OO CO ()

(a) (b) (c)
FIG. 2

We will show that a variant of the greedy approach works in either of the cases
2(a) and 2(b). Let G- e denote the graph formed from G by contracting the edge e,
i.e., identifying the endpoints of e and deleting e. In terms of the dual graph, the
variant of the greedy heuristic that we shall use is the following:

procedure greedy (G*)
begin
find a shortest cycle C, in G*
for all edges e in the cycle C, do G*« G* - e
find a shortest cycle C, in G*
output C, U C,
end

In this variant we avoid trying all triples of vertices, which of course improves
the efficiency of the algorithm. Although this algorithm does not always give an optimal

Downloaded 03/11/19 to 67.169.12.101. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

AN O(|V]) ALGORITHM FOR THE PLANAR 3-CUT PROBLEM 709

solution, there are a number of cases in which it does work, including those cases
when the optimal solution is of either of the configurations given in Fig. 2(a,b). In
fact, our procedure to find an optimal 3-cut works by first performing greedy (G*),
and then performing a special procedure designed to handle the case depicted in Fig.
2(c). The following theorem justifies this approach.

THEOREM 1. Let C; be any shortest cycle of the graph G*. If there exists an optimal
3-face subgraph that is the union of 2 cycles with at most one vertex in common, then
there exists some other cycle C such that C; and C share at most one vertex and C;U C
is an optimal 3-face subgraph.

Proof. Suppose not. Let C,U C, be an optimal 3-face subgraph, where C, and C,
have at most one common vertex. Note that by our assumptions, C; must have at least
2 vertices in common with C; for either i =1 or 2. Recall that |G| denotes the number
of edges in G. Notice that a cycle C has |C| vertices.

If C; and C; are edge disjoint but have at least two vertices in common, then, by
using Euler’s formula |F|=2+|E|-|V|, we see that the number of faces of C;U C; is
at least

2+(Cl+IGh-(Cl= (Gl -2)) =4.

Therefore, C;U C; contains a proper subgraph with 3 faces and fewer edges than
C,U C,, which is a contradiction.
If C; and C; have an edge in common, then

|cucl<|cl+]Cl=|al+[C).

Furthermore, once again using Euler’s formula, it is not hard to see that C;U C; must
have at least 3 faces. Therefore, C;U C; is a 3-face subgraph with fewer edges than
C,U C,, which is a contradiction. 0O

It is important to note that if the optimal 3-face subgraph consists of 2 cycles
sharing at most one common vertex, Theorem 1 says that any shortest cycle is part of
an optimal solution. Thus we may greedily contract it, and search for its partner.

Note that it is very simple to use breadth-first search (BFS) to find the shortest
cycle of a graph that contains a specified vertex u. Recall that BFS partitions the vertex
set of a graph into levels, and the edge set into cross edges and level edges. (For a
comprehensive treatment of BFS, see [AHU].) Furthermore, for each vertex, each edge
incident to it either goes to a vertex of the next level closer to the root, the same level
or the next level further from the root; therefore, it is possible to partition the degree
of any vertex v into the up-degree, up (v), the cross-degree, cross (v), and the down-
degree, down (v), respectively. Note that it is possible to compute all three parameters
as part of the BFS without increasing the order of the running time of the search
algorithm. We detect the smallest cycle containing u by conducting a BFS from u until
we find a vertex v that has up (v)+ cross (v) = 2. Since BFS requires only O(|G|) time,
the procedure outlined above requires only O(|G|*) time.

We next consider the case where the optimal solution is of the form depicted in
Fig. 2(c). This graph may be viewed as a pair of points connected by three vertex-disjoint
paths. The following result will be very useful in gaining a better perspective of the
cases in which greedy (G*) is successful.

THEOREM 2. Suppose that there exists an optimal 3-face subgraph G* which is the
union of three paths P,, P, and P;, between vertices u and v. If one of the paths P, is at
least as long as the shortest cycle C in G*, then greedy (G*) delivers an optimal solution.

Proof. Consider the solution produced by greedy (G*), C; U C,. Suppose without
loss of generality that P, is at least as long as C,, which is a shortest cycle of G*.

Downloaded 03/11/19 to 67.169.12.101. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

710 DORIT S. HOCHBAUM AND DAVID B. SHMOYS

There are two possible cases: either C,= P,U P;, or C,# P,U P;,. In the first case the
result is trivial since then it is clear that

|C U Gy =|Cy|+|Cy|l=|P,|+ (|P,U P3|) = |P,U P,U Pj|.

If C,# P,U P, then after contracting C, the subgraph corresponding to P,U P; must
still be a cycle (since not all of the edges of P,U P; have been contracted). Since C,
is no longer than this cycle the total length of C,UC, is no more than that of
P UPUP,. O

We can use Theorem 2 to gain considerable insight into the structure of the optimal
solution when greedy (G*) does not deliver an optimal solution. Such optimal solutions,
which must be of the type given in Fig. 2(c), can be characterized by the length of the
three paths P;, P, and P;. More specifically, since greedy (G*) always delivers a
solution of size no more than 10, we know that the three path lengths sum to at most
9, where the longest is strictly shorter than the length of the shortest cycle. From these
two conditions we know that the shortest path is of length at most three. This means
that if we were conducting BFS from u and the optimal 3-face subgraph consisted of
three disjoints paths from u to v, v must be, at most, in level three. (We will say from
here on, that v is “labeled” 3.)

We will consider these cases, based on the length of the shortest cycle C; in G*.
We shall use the notation (x, y, z) to denote the configuration where P,, P,, P; have
lengths x, y, z where x=y =z

Case 1. |Cy|=1. This case is vacuous since it is impossible for the longest path
to have length 0.

Case 2. |Cy|=2. In this case, the only possible configuration is (1,1,1), or
equivalently that there are three edges between some pair of vertices u and v. Notice
that if we were conducting BFS from u we would find that up (v)=3.

Case 3. |C,|=3. Here there are two possible configurations, (1, 2, 2) and (2, 2, 2).
These are depicted in Fig. 3.

(1,2,2) (2,2,2)

FI1G. 3

(Notice that (1,1,1) and (1, 1,2) cannot occur because then the shortest cycle
would have at most 2 edges.) The labels assigned to the nodes in these figures, and
the ones that follow, are the BFS labels of the nodes on the assumption that the given
configuration is an optimal 3-face subgraph. For the first situation, in performing BFS
from u, we find a vertex labeled 1 with cross (v) =2. In the second we find a vertex
labeled 2 with up (v) =3. Notice that in both of these cases we have found vertices
with cross (v)+up (v)=3.

Case 4. |C,| = 4. In this case, there are the configurations (2, 2, 2), (2, 2, 3), (1, 3, 3),
(2,3,3) (see Fig. 4).

(Note that (3, 3, 3) need not be considered here, since greedy (G*) is sure to find
C, with at most 5 edges.) As above, (2,2,2) can be detected by finding a vertex v

Downloaded 03/11/19 to 67.169.12.101. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

AN O(|V) ALGORITHM FOR THE PLANAR 3-CUT PROBLEM 711

(2,2,3) (1,3,3) (2,3,3)
ou Ou Ou
1 1 1 1 1
1
2
2 1] |2
v vy Vo v
FiG. 4

labeled with a 2 with up (v) = 3. For the case (2, 2, 3), we find a vertex v with up (v) =2
and cross (v) = 1. For (1, 3,3), we find a vertex labeled 1 with two neighbors v, and
v, with up (v;) =2. For (2, 3, 3), we find a vertex v with cross (v) =2 (and up (v)=1).

Case 5. |C,|=5. For this final case, only the configurations (2,3, 3), (3,3,3),
(2,3,4) and (1, 4, 4) must be considered. The first configuration is handled exactly as
in Case 4, and the remaining ones are depicted in Fig. 5.

(3,3.3) (2,3,4) (1,4,4)
Ou u
1 1
1 1 1
2 2
2 2
2 Vi 4 2
3 " v V2

FIG. §

For (3, 3,3) we find a vertex labeled 3 with up (v)=3. For (2, 3,4), a vertex v
labeled 2 with cross (v) =1 has a neighbor v, with up (v,) = 2. Finally, for (1,4,4) a
vertex v labeled with a 1 has two neighbors, v, and v, with cross (v;) = 1.

Summarizing what we have done, there are only 2 different types of configurations
that we must search for in performing a BFS from u:

1. A vertex v with cross (v)+up (v)=3.

2. A vertex with two neighbors v, and v, with cross (v;)+up (v;) = 2.

Therefore, if greedy (G*) does not find an optimal solution, then by performing
BFS from each vertex and searching for one of these two configurations, we are
guaranteed to find an optimal 3-face subgraph. It is quite straightforward to modify
BFS to detect these configurations. Therefore, we see that it can be implemented in
O(|VP) time, since BFS from each node requires O(|V|) time for planar graphs.
Furthermore, by performing greedy (G*) and this procedure as well , and then choosing
the best solution found, we find an optimal 3-face subgraph in O(|V?|) time.

It is significant to note that the planarity of G is used in two ways. Most importantly,
it insures the existence of the dual graph; it is used secondarily in guaranteeing an
“easy” cut of size 10, and thus limiting the search considerably.

Another interesting point is that the same argument as was used above, can be
used to show that a greedy approach never delivers a k-cut of size more than 5k. Thus,
for fixed k the minimum k-cut problem is easily seen to be polynomial using an
enumerative approach. Can a simpler approach, analogous to the one given here be
used instead? Such an approach is complicated by the fact that the types of possible

Downloaded 03/11/19 to 67.169.12.101. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

712 DORIT S. HOCHBAUM AND DAVID B. SHMOYS

configurations become more complicated (and much more numerous) than what was
given in Fig. 2 for the 3-cut problem.

The complexity of the 3-cut problem for arbitrary graphs remains a challenging
open problem. Recently, Hochbaum and Tsai [HT] have shown that a greedy heuristic
for the 3-cut problem gives a solution, even for the weighted case, that is at most 4/3
the optimal solution, and that this bound is tight. Independently, Johnson,
Papadimitriou, Seymour and Yannakakis [JPSY] proved this result in more general
form, that for the weighted k-cut problem a greedy approach yields a solution no more
than (2 —2/k) times the optimal solution. They also consider a more general problem:
the problem of finding a minimum k-cut with the additional constraint that they specify
k vertices that must be in different components. They showed that for planar weighted
graphs the minimum 3-cut problem with specified vertices is polynomial. Their
algorithm, although polynomial, is not efficient, since the polynomial is a polynomial
in k! and the degree of the polynomial depends linearly on k. Furthermore, they
showed that the 3-cut problem with specified vertices for arbitrary graphs is NP-
complete. This does not appear to imply anything about the complexity of the 3-cut
problem for arbitrary graphs. If the general 3-cut problem were to be polynomial, it
would be a remarkable extension of one of the oldest results in combinatorial
optimization.

Acknowledgment. We are grateful to the anonymous referee whose suggestions
greatly enhanced the clarity and simplicity of this paper.

REFERENCES

[AHU] A.V.AHo,]J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[JPSY] D. S. JoHNsON, C. H. PAPADIMITRIOU, P. D. SEYMOUR AND M. YANNAKAKIS, Private
communication, 1983.

[HT] D. S. HOCHBAUM AND L.-H. TsaAl, A greedy heuristic for the minimum 3 -cut problem, manuscript,
1983.

