The Pseudoflow Algorithm and the
Pseudoflow-Based Simplex for the Maximum
Flow Problem

Dorit S. Hochbaum

Department of Industrial Engineering and Operations Research, and Walter A. Haas
School of Business, University of California, Berkeley

Abstract. We introduce an algorithm that solves the maximum flow
problem without generating flows explicitly. The algorithm solves di-
rectly a problem we call the maximum s-excess problem. That problem
is equivalent to the minimum cut problem, and is a direct extension of
the maximum closure problem. The concepts used also lead to a new
parametric analysis algorithm generating all breakpoints in the amount
of time of a single run.

The insights derived from the analysis of the new algorithm lead to a new
simplex algorithm for the maximum flow problem — a pseudoflow-based
simplex. We show that this simplex algorithm can perform a parametric
analysis in the same amount of time as a single run. This is the first
known simplex algorithm for maximum flow that generates all possible
breakpoints of parameter values in the same complexity as required to
solve a single maximum flow instance and the fastest one.

The complexities of our pseudoflow algorithm, the new simplex algo-
rithm, and the parametric analysis for both algorithms are O(mnlogn)
on a graph with n nodes and m arcs.

1 Introduction

This extended abstract describes an efficient new approach to the maximum
flow and minimum cut problems. The approach is based on a new certificate
of optimality inspired by the algorithm of Lerchs and Grossmann, [LG64]. This
certificate, called normalized tree, partitions the set of nodes into subsets some of
which have excess capacity and some have capacity deficit. The nodes that belong
to the subsets with excess form the source set of a candidate minimum cut. The
algorithm solves, instead of the maximum flow problem, another problem which
we call the maximum s-excess problem. That problem is defined on a directed
graph with arc capacities and node weights and does not contain distinguished
source and sink nodes. The objective of the s-excess problem is to find a subset
of the nodes that maximizes the sum of node weights, minus the weight of
the arcs separating the set from the remainder of the nodes. The new problem

* Research supported in part by NEC, by NSF award No. DMI-9713482, and by SUN

Microsystems.

is shown to be equivalent to the minimum cut problem that is traditionally
solved by deriving a maximum flow first. With the new algorithm these problems
can be solved without considering flows explicitly. The steps of the algorithm
can be interpreted as manipulating pseudoflow — a flow that does not satisfy
flow balance constraints. For this reason we choose to call the algorithm the
pseudoflow algorithm.

The main feature that distinguishes the pseudoflow algorithm from other
known algorithms for the maximum flow problem is that it does not seek to either
preserve or progress towards feasibility. Instead the algorithm creates “pockets”
of nodes so that at optimum there is no residual arc that can carry additional
flow between an “excess pocket” and a “deficit pocket”. The set of nodes in
all the “excess pockets” form the source set of a minimum cut and also the
maximum s-excess set.

The certificate maintained by our algorithm bears a resemblance to the ba-
sic arcs tree maintained by simplex. It is demonstrated that this certificate is
analogous to the concept of a strong basis introduced by Cunningham [C76]
if implemented in a certain “extended network” permitting violations of flow
balance constraints. It is further shown that the algorithmic steps taken by our
algorithm are substantially different from those of the simplex and lead to a
different outcome in the next iteration based on the same strong basis in the
given iteration.

The contributions in this paper include:

1. The introduction of the pseudoflow maximum s-excess problem that provides
a new perspective on the maximum flow problem.

2. A pseudoflow algorithm for the maximum flow problem of complexity
O(mnlogn).

3. Parametric analysis conducted with the pseudoflow algorithm that generates
all breakpoints in the same complexity as a single run.

4. A new pseudoflow-based simplex algorithm for maximum flow using the low-
est label approach.

5. A parametric analysis simplex method that finds all possible parameter
breakpoints in the same time as a single run, O(mn logn).

The parametric simplex method is the first known parametric implementa-
tion of simplex to date that finds all breakpoints in the same running time as a
single application.

1.1 Notation

For P, C V, the set of arcs going from P to @ is denoted by, (P, Q) = {(u,v) €
Alu € P and v € Q}. Let the capacity of arc (u,v) be denoted by ¢y, or e(u, v).
For PQ C V, PNn@ = (), the capacity of the cut separating P from @ is,
C(P,Q) = Z(u,v)e(P,Q) Cup- For SCV, let S=V\S.

For a graph G = (V, A) we denote the number of arcs by m = |A| and the
number of nodes by n = |V].

An arc (u,v) of an unspecified direction is referred to as edge [u, v].
[v1,v2,...,vs] denotes an undirected path from vy to vg. That is,

[v1,v2], ..., [ve—1, VK] € A.

We use the convention that the capacity of an arc that is not in the graph is
zero. Thus for (a,b) € A and (b,a) € A, ¢5o = 0.

The capacity of an edge e is denoted either by ¢(e) or ¢.. The flow on an edge
e is denoted either by f(e) or f.. We use the convention that f(a,b) = —f(b, a).
For a given flow or pseudoflow f, the residual capacity of e is denoted by ¢;(e)
which is ¢, — f..

Given a rooted tree, T, T), is the subtree suspended from node v that contains
all the descendants of v in T". T}y y(vy) = Ty 1s the subtree suspended from the
edge [v, p(v)]. An immediate descendant of a node v, a child of v, is denoted by
ch(v), and the unique immediate ancestor of a node v, the parent of v, by p(v).

2 The Maximum Flow Problem and the Maximum
s-Excess Problem

The pseudoflow algorithm described here ultimately finds a maximum flow in
a graph. Rather than solving the problem directly the algorithm solves instead
the maximum s-excess problem.

Problem Name: Mazimum s-Ezcess

Instance: Given a directed graph G = (V, A), node weights (positive or neg-
ative) w; for alli € V', and nonnegative arc weights c;; for all (i,j) € A.

Optimization Problem: Find a subset of nodes S CV such that

D oies Wi — ZieS,jeS ¢ij s mazimum.

We elaborate here further on this problem and its relationship to the maxi-
mum flow and minimum cut problems.

The maximum flow problem is defined on a directed graph with distinguished
source and sink nodes and the arcs adjacent to source and sink, A(s) and A(¢),
Gsi = (VU {s, 1}, AU A(s) U A(D)).

The standard formulation of the maximum flow problem with zero lower
bounds and #;; variables indicating the amount of flow on arc (7, j) is,

Max Tis
subject to >, g — Z]' =0 keV
0<w; <cy V(i,j) €A

In this formulation the first set of (equality) constraints is called the flow bal-
ance constraints. The second set of (inequality) constraints is called the capacity
constraints.

Definition 1. The s- excess capacity of a set S C 'V in the graph Gsi = (VU
(5,1}, AU A(s) U A(®)) is, C({s},9) — (S, 5 U {t}).

We claim that finding a subset S C V that maximizes C'({s},S) — C(S,S U
{t}) is equivalent to the maximum s-excess problem.

Lemma 2. A subset of nodes S C V mazimizes C({s},S) — C(S,5 U {t}) in
Gy if and only if it is of mazimum s-excess in the graph G = (V, A).

We next prove that the s-excess problem is equivalent to the minimum cut
problem,

Lemma 3. S s the source set of a minimum cut if and only if it 1s a set of
mazimum s- excess capacity C(s,S) — C(S,SU{t}) in the graph.

Proof. Given an instance of the s-excess problem. Append to the graph G =
(V, A) the nodes s and t; Assign arcs with capacities equal to the weights of
nodes from s to the nodes of positive weight; Assign arcs with capacities equal
to the absolute value of the weights of nodes of negative weights, from the nodes
to 1.

The sum of weights of nodes in S is also the sum of capacities C({s}, S) —
C(S,{t}) where the first term corresponds to positive weights in S, and the
second to negative weights in S:

Z]’eS wj — ZiES,jES ¢ij =C

C
C
C

Q

S5,

< n

S

) -
) -

C/)\Cz

(5, {t

c(s,s {})

V)= C({s},9) = C(8, S u{t}).
V)= C({s}US,Su{t}).

S

S

({s}
({ }’
({s}
({s}

The latter term is the capacity of the cut ({s}US, SU{t}). Hence maximizing the
s-excess capacity is equivalent to minimizing the capacity of the cut separating
s from ¢.

To see that the opposite is true, consider the network (V U {s,t}, A) with
arc capacities. Assign to node v € V' a weight that is ¢, if the node is adjacent
to s and —e¢,¢ if the node is adjacent to t. Note that it is always possible to
remove paths of length 2 from s to ¢ thus avoiding the presence of nodes that
are adjacent to both source and sink. This is done by subtracting from the arcs’
capacities ¢gy, ¢y¢ the quantity min{cg,, ¢y¢}. The capacities then translate into
node weights that serve asinput to the s-excess problem and satisfy the equalities
above. O

We conclude that the maximum s-excess problem is a complement of min-
imum cut which in turn is a dual of the maximum flow problem. As such, its
solution does not contain more flow information than the solution to the min-
imum cut problem. As we see later, however, it i1s possible to derive a feasible
flow of value equal to that of the cut from the certificate used in the algorithm,
in O(mn) time.

The reader may wonder about the arbitrary nature of the s-excess problem,
at least in the sense that it has not been previously addressed in the literature.
The explanation is that this problem is a relaxation of the maximum closure
problem where the objective is to find, in a node weighted graph, a closed set of

nodes of maximum total weight. In the maximum closure problem it is required
that all successors of each node in the closure set will belong to the set. In the
s-excess problem this requirement is replaced by a penalty assigned to arcs of
immediate successors that are not included in the set. In that sense the s-excess
problem is a relazation of the maximum closure problem. The proof of Lemma
3 is effectively an extension of Picard’s proof [Pic76] demonstrating that the
maximum weight closed set in a graph (maximum closure) is the source set of a
minimum cut.

We provide a detailed account of the use of the pseudoflow and other algo-
rithms for the maximum closure problem in [Hoc96]. We also explain there how
these algorithms have been used in the mining industry and describe the link to
the algorithm of Lerchs and Grossmann, [LG64].

3 Preliminaries and Definitions

Pseudoflowis an assignment of values to arcs that satisfy the capacity constraints
but not necessarily the flow balance constraints. Unlike preflow, that may violate
the flow balance constraints only with inflow exceeding outflow, pseudoflow per-
mits the inflow to be either strictly larger than outflow (excess) or outflow strictly
larger than inflow (deficit). Let f be a pseudoflow vector with 0 < f;; < ¢;; the
pseudoflow value assigned to arc (7, 7). Let inflow(D), ouiflow(D) be the total
amount of flow incoming and outgoing to and from the set of nodes D. For each
subset of nodes D C V,

excess(D) = inflow(D) — outflow(D)
= Z(u,v)E(VU{s}\D,D) fu,v - Z(v,u)e(D,VU{t}\D) fv,u~

The absolute value of excess that is less than zero is called deficit, i.e.
—excess(D) = deficit(D).

Given a rooted tree T'. For a subtree T, = Tj, pvy), let My poy) = My =
excess(Ty) and be called the mass of the node v or the arc [v, p(v)]. That is,
the mass is the amount of flow on (v, p(v)) directed towards the root. A flow
directed in the opposite direction — from p(v) to v — is interpreted as negative
excess Or Mmass.

We define the extended network as follows: The network Gy is augmented
with a set of arcs — two additional arcs per node. Each node has one arc of
infinite capacity directed into it from the sink, and one arc of infinite capacity
directed from it to the source. This construction is shown in Figure 1. We refer
to the appended arcs from sink ¢ as the deficit arcs and the appended arcs to the
source s as the excess arcs. The source and sink nodes are compressed into a ‘root’
node r. We refer to the extended network’s set of arcs as A48, These include, in
addition to the deficit and excess arcs, also the arcs adjacent to source and sink
— A(s) and A(t). The extended network is the graph G348 = (V U {r}, A3U8).

Any pseudoflow on a graph has an equivalent feasible flow on the extended
network derived from the graph — a node with excess sends the excess back to

excessarc deficit arc

Fig.1. An extended network with excesses and deficits

the source, and a node with deficit receives a flow that balances this deficit from
the sink.

Throughout our discussion of flows on extended networks, all the flows con-
sidered saturate the arcs adjacent to source and sink and thus the status of
these arcs, as saturated, remains invariant. We thus omit repeated reference to

the arcs A(s) and A(t).

4 A Normalized Tree

The algorithm maintains a construction that we call a normalized tree after the
use of this term by Lerchs and Grossmann in [LG64] for a construction that
inspired ours. Let node r ¢ V serve as root and represent a contraction of s and
t. Let (VU {r},T) be a tree where T'C A. The children of r are called the roots
of their respective branches or subtrees. The deficit and excess arcs are only used
to connect r to the roots of the branches.

A normalized tree is a rooted tree in r that induces a forest in (V, A). We
refer to each rooted tree in the forest as branch. A branch of the normalized
tree rooted at a child of r, r;, T}, is called strong if excess(T,,) > 0, and weak
otherwise. All nodes of strong branches are considered strong, and all nodes of
weak branches are considered weak.

A normalized tree is depicted in Figure 2.

Consider a rooted forest T\ {r} in G = (V, 4) and a pseudoflow f in Gy
satisfying the properties:

Property 1 The pseudoflow f saturates all source-adjacent arcs and all sink-
adjacent arcs.

excess> 0 excess<0
deficit arc

strong weak

Fig.2. A normalized tree. Each r; is a root of a branch

Property 2 In every branch all downwards restdual capacities are strictly pos-
wve.

Property 3 The only nodes that do not satisfy flow balance constraints are the
roots of their respective branches that are adjacent to r in the extended network.

Definition 4. A tree T with pseudoflow f is called normalized if it satisfies
properties 1, 2, and 3.

Property 3 means, in other words, that in order for 7" to be a normalized
tree, f has to satisfy flow balance constraints in the extended network with only
the roots of the branches permitted to send/receive flows along excess or deficit
arcs.

We let the excess of a normalized tree T' and pseudoflow f be the sum of
excesses of its strong branches (or strong nodes). Property 1 implies that the
excess of a set of strong nodes in a normalized tree, S, satisfies:

excess(S) = inflow(S) — outflow(S) = f({s},5) + f(S,5) — £(S,9)

—f(S{t}) = C({s},9) = O(S, {t}) + f(S,9) — £(5,5).

This equality is used to prove the superoptimality of the set of strong nodes (in
the superoptimality Property).

We choose to work with normalized trees that satisfy an optional property
stronger than 2:

Property 4 (unsaturated arcs property) The tree T has all upwards resid-
wal capacities strictly positive.

Another optional implied property is:

Property 5 All “free” arcs of A with flows strictly between lower and upper
bound are included in T.

With this property all arcs that are not adjacent to root are free. 7" is thus the
union of all free arcs including some excess and deficit arcs. The only arcs in T’
that are not free are deficit arcs with 0 flow — adjacent to 0-deficit branches. All
out of tree arcs are thus at their upper or at the lower bounds.

The next property — the superoptimality property — is satisfied by any nor-
malized tree, or equivalently, by any tree-pseudoflow pair satisfying properties
1, 2, and 3. The superoptimality of a normalized tree and the conditions for
optimality are stated in the next subsection.

4.1 The Superoptimality of a Normalized Tree

Property 6 (superoptimality) The sel of sirong nodes of the normalized tree
T is a superoptimal solution to the s-excess problem: The sum of excesses of the
strong branches is an upper bound on the marimum s-excess.

From the proof of the superoptimality property it follows that when all arcs
from S to S are saturated, then no set of nodes other than S has a larger s-excess.
We thus obtain the optimality condition as a corollary to the superoptimality

property.

Corollary 5 (Optimality condition). Given a normalized tree, a pseudoflow
[and the collection of strong nodes in the tree S. If f saturates all arcs in (S, S)
then S is a mazimum s-excess set in the graph.

The next Corollary holds only if Property 4 is satisfied. It implies minimality
of the optimal solution set S.

Corollary 6 (Minimality). Any proper subsel of the sirong nodes is not a
mazimum s-excess set in (V, A").

On the other hand, it is possible to append to the set of strong nodes S any
collection of 0-deficit branches that have no residual arcs to weak nodes without
changing the value of the optimal solution. This leads to a maezimal maximum
s-excess set.

5 The Description of the Pseudoflow Algorithm

The algorithm maintains a superoptimal s-excess solution set in the form of
the set of strong nodes of a normalized tree. That is, the sum of excesses of
strong branches is only greater than the maximum s-excess. Each strong branch
forms an “excess pocket” with the total excess of the branch assigned to its root.
Within each branch the pseudoflow is feasible.

Each iteration of the algorithm consists of identifying an infeasibility in the
form of a residual arc from a strong node to a weak node. The arc is then added
in and the tree is updated. The update consists of pushing the entire excess
of the strong branch along a path from the root of the strong branch to the
merger arc (s', w) and progressing towards the root of the weak branch. The first

arc encountered that does not have sufficient residual capacity to accommodate
the pushed flow gets split and the subtree suspended from that arc becomes a
strong branch with excess equal to the amount of flow that could not be pushed
through the arc. The process continues along the path till the next bottleneck
arc 1s encountered

Recall that G = (V, A), and Ay is the set of residual arcs with respect to a
given pseudoflow f.

5.1 The Pseudoflow Algorithm

begin
Initialize V(s,j) € A(s), f(s,J) = c(s,7). Y(4,t) € At), f(4,t) = ¢(j,1).
For all arcs (¢,7) € 4, f(i,j) = 0.
T = Ujev[r, j], the branches of the tree are {j};ev.
Nodes with positive excess are strong, S, and the rest are weak, W.
while (S,W)N Ay # 0 do
Select (s',w) € (S, W)
Merge T — T\ [r, rs] U (s', w).

Renormalize
Push 6 = M|, ,._,1 units of flow along the path [ry, ... s w, ... 7y, 7]
begin

Let [v;, v;41] be the next edge on the path.
If ef(vi, vig1) > 6 augment flow by &, f(vi, vig1) — f(vi, vig1) + 6.
Else, split {(v;, vit1),6 — ¢f(vi, vig1)}.
Set & — cf(v;, vig1).
Set f(vi,v541) — c(vi,viq1); t — i+ 1
end
end
end
procedure split {(a,b), M}
T =T\ (a,b)U(r,a); My =M.
The branch T, is strong or 0-deficit with excess M.
Ay — Ay U {1 {(@ b))

end

The push step, in which we augment flow by & if ¢;(v;,vi41) > 8, can be
replaced by augmentation if ¢;(v;,v;41) > 8. The algorithm remains correct,
but the set of strong nodes is no longer minimal among maximum s-excess sets,
and will not satisfy Property 4. We prove in the expanded version of this paper
that the tree maintained is indeed normalized, which establishes the algorithm’s
correctness.

5.2 Initialization

We choose an initial normalized tree with each node as a separate branch for
which the node serves as root. The corresponding pseudoflow saturates all arcs
adjacent to source and to sink. Thus all nodes adjacent to source are strong
nodes, and all those adjacent to sink are weak nodes. All the remaining nodes
have zero inflow and outflow, and are thus of 0 deficit and set as weak. If a node
is adjacent to both source and sink, then the lower capacity arc among the two
is removed, and the other has that value subtracted from it. Therefore each node
is uniquely identified with being adjacent to either source or sink or to neither.

5.3 Termination

The algorithm terminates when there is no residual arc between any strong and
weak nodes.

From Corollary 6 we conclude that at termination the set of strong nodes
is a minimal source set of a minimum cut. In other words, any proper subset
of the set of strong nodes cannot be a source set of a minimum cut. It will be
necessary to identify additional optimal solutions, and in particular a minimum
cut with maximal source set for the parametric analysis.

To that end, we identify the O-deficit branches among the weak branches. The
set of strong branches can be appended with any collection of 0-deficit branches
without residual arcs to weak nodes for an alternative optimal solution. The
collection of all such 0-deficit branches with the strong nodes forms the sink set
of a minimum cut that is mazimal. To see that, consider an analogue of Corollary
6 that demonstrates that no proper subset of a weak branch (of negative deficit)
can be in a source set of a minimum cut.

5.4 About Normalized Trees and Feasible Flows

Given any tree in the extended network, and a specification of pseudoflow values
on the out of tree arcs, it is possible to determine in linear time O(n) whether
the tree is normalized. If the tree is not normalized, then the process is used to
derive a normalized tree which consists of a subset of the arcs of the given tree.
Given a normalized tree it is possible to derive in O(n) time the values of the
pseudoflow on the tree arcs, and in time O(mn) to derive an associated feasible
flow. At termination, that feasible flow is a maximum flow.

5.5 Variants of Pseudoflow Algorithm and and their Complexity

Implementing the pseudoflow algorithm in its generic form results in complexity
of O(nMT) iterations, for M+ = C({s}, V) — the sum of all capacities of arcs
adjacent to source. This running time is not polynomial.

A natural variant to apply is capacity scaling. Capacity scaling is imple-
mented in a straightforward way with running time of O(mnlog M), where M is

the largest capacity of source-adjacent or sink-adjacent arcs. This running time
is polynomial but not strongly polynomial.

Our strongly polynomial variant relies on the lowest label selection rule of a
merger arc. With this selection rule, our algorithm runs in strongly polynomial
time, O(mn logn).

The lowest label selection rule is described recursively. Initially all nodes are
assigned the label 1, £, = 1 for all v € V. The arc (s, w) selected is such that w
is a lowest label weak node among all possible active arcs.

Upon a merger using the arc (s, w) the label of the strong node s’ becomes
the label of w plus 1 and all nodes of the strong branch with labels smaller than
that of s’ are updated to be equal to the label of s’: formally, £,; «— £, + 1 and
for all nodes v in the same branch with ', £, «— max{¢,, ¢ }.

The lowest label rule guarantees a bound of mn on the total number of
iterations. In the phase implementation all weak nodes of the same label are

processed in one phase. The phase implementation runs in time O(mn logn).
The lowest label implementation of the algorithm is particulary suitable for
parameteric implementation. The algorithm has features that make it especially
easy to adjust to changes in capacities. The common type of analysis finding all
breakpoints in parametric capacities of arcs adjacent to source and sink that are
linear functions of the parameter A can also be implemented in O(mnlogn).

6 Pseudoflow-Based Simplex

The simplex algorithm adapted to the s-excess problem maintains a pseudoflow
with all source and sink adjacent arcs saturated. At termination, the optimal
solution delivered by this s-excess version of simplex identifies a minimum cut.
The solution is optimal when only source adjacent nodes have positive excess
and only sink adjacent nodes have deficits. Additional running time is required
to reconstruct the feasible flows on the given tree, that constitute maximum
flow.

We show in the full version of the paper that the concept of a strong basis,
introduced by Cunningham [C76], is a tree in the extended network satisfying
Properties 2, 3 and 5.

6.1 Pseudoflow-Based Simplex Iteration

An entering arc i1s a merger arc. It completes a cycle in the residual graph. It
is thus an arc between two branches. We include an auxiliary arc from sink to
source, thus the merger arc completes a cycle. Alternatively we shrink source
and sink into a single node r as before.

Nodes that are on the source side of the tree are referred to as strong, and
those that are on the sink side, as weak, with the notation of S and W respec-
tively. Let an entering arc with positive residual capacity be (s', w). The cycle
created is [r,7er, ... 8w, . Py, 7).

The largest amount of the flow that can be augmented along the cycle is
the bottleneck residual capacity along the cycle. The first arc attaining this
bottleneck capacity is the leaving arc.

In the Simpelx the amount of flow pushed is determined by the bottleneck
capacity. In the pseudoflow algorithm the entire excess is pushed even though it
may be blocked by one or more arcs that have insufficient residual capacity.

The use of the lowest label selection rule in the pseudoflow-based simplex
algorithm for the choice of an entering arc leads to precisely the same complexity
as that of our pseudoflow algorithm, O(mn logn).

6.2 Parametric Analysis for Pseudoflow-Based Simplex

Given a series of ¢ parameter values for A, {Ay,... A}, Let the source adja-
cent arcs capacities and the sink adjacent arc capacities be a linear function
of A with the source adjacent capacities monotone nondecreasing with A and
the sink adjacent capacities monotone nonincreasing with A. Recently Goldfarb
and Chen [GC96] presented a dual simplex method with running time O(mn?).
This method is adaptable to use for sensitivity analysis for such a sequence of
¢ parameter values, in the same amount of time as a single run, O(mn? + nf).
The algorithm, however, does not generate all parameter breakpoints in a com-
plete parametric analysis. OQur algorithm is the first simplex algorithm that does
generate all parameter breakpoints.

The parametric analysis process is not described here. We only mention that
in order to implement the complete parametric analysis we must recover from
the simplex solution the minimal and maximal source sets minimum cuts. To do
that, we scan the tree at the end of each computation for one parameter value,
and separate 0-deficit branches. This process is equivalent to the normalization
of a tree. It adds only linear time to the running time and may be viewd as basis
adjustment. The running time is linear in the number of nodes in the currently
computed graph.

The overall running time of the procedure is identical to that of the pseud-
oflow algorithm with lowest label, O(mnlogn + nf).

6.3 Comparing Simplex to Pseudoflow

Although the simplex implementation in the extended network has the same
complexity as that of the pseudoflow algorithm, the two algorithms are not the
same. Starting from the same normalized tree a simplex iteration will produce
different trees in the following iteration. The pseudoflow algorithm tends to pro-
duce trees that are shallower than those produced by simplex thus reducing the
average work per iteration (which depends on the length of the path from the
root to the merger node). Other details on the similarities and differences be-
tween simplex and the pseudoflow algorithm are provided in the full version of
the paper.

References

[C76] W. H. Cunningham. A network simplex method. Mathematical Programming ,
1 (1976), 105-116.

[GGT89] G. Gallo, M. D. Grigoriadis and R. E. Tarjan. A fast parametric maximum
flow algorithm and applications. SIAM Journal of Computing, Vol. 18, No. 1 (1989)
30-55.

[GT86] A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum Flow
Problem. J. Assoc. Comput. Mach., 35 (1988), 921-940.

[GC96] D. Goldfarb and W. Chen. On strongly polynomial dual algorithms for the
Maximum flow problem. To appear, Special issue of Mathematical Programming B,
(1996).

[GH90] D. Goldfarb and J. Hao. A primal simplex method that solves the Maximum
flow problem in at most nm pivots and O(n2m) time. Mathematical Programming ,
47 (1990), 353-365.

[Hoc96] D. S. Hochbaum. A new - old algorithm for minimum cut on closure graphs.
Manuscript, June (1996).

[LG64] H. Lerchs, I. F. Grossmann. Optimum Design of Open-Pit Mines. Transactions,
C.I.M., Vol. LXVIII (1965) 17-24.

[Pic76] J. C. Picard. Maximal Closure of a Graph and Applications to Combinatorial
Problems. Management Science, 22 (1976), 1268-1272.

