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Abstract� We introduce an algorithm that solves the maximum �ow
problem without generating �ows explicitly� The algorithm solves di�
rectly a problem we call the maximum s�excess problem� That problem
is equivalent to the minimum cut problem� and is a direct extension of
the maximum closure problem� The concepts used also lead to a new
parametric analysis algorithm generating all breakpoints in the amount
of time of a single run�
The insights derived from the analysis of the new algorithm lead to a new
simplex algorithm for the maximum �ow problem � a pseudo�ow�based
simplex� We show that this simplex algorithm can perform a parametric
analysis in the same amount of time as a single run� This is the �rst
known simplex algorithm for maximum �ow that generates all possible
breakpoints of parameter values in the same complexity as required to
solve a single maximum �ow instance and the fastest one�
The complexities of our pseudo�ow algorithm� the new simplex algo�
rithm� and the parametric analysis for both algorithms are O�mn log n	
on a graph with n nodes and m arcs�

� Introduction

This extended abstract describes an e�cient new approach to the maximum
�ow and minimum cut problems� The approach is based on a new certi�cate
of optimality inspired by the algorithm of Lerchs and Grossmann� �LG�	
� This
certi�cate� called normalized tree� partitions the set of nodes into subsets some of
which have excess capacity and some have capacity de�cit� The nodes that belong
to the subsets with excess form the source set of a candidate minimum cut� The
algorithm solves� instead of the maximum�ow problem� another problem which
we call the maximum s�excess problem� That problem is de�ned on a directed
graph with arc capacities and node weights and does not contain distinguished
source and sink nodes� The objective of the s�excess problem is to �nd a subset
of the nodes that maximizes the sum of node weights� minus the weight of
the arcs separating the set from the remainder of the nodes� The new problem
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is shown to be equivalent to the minimum cut problem that is traditionally
solved by deriving a maximum�ow �rst� With the new algorithm these problems
can be solved without considering �ows explicitly� The steps of the algorithm
can be interpreted as manipulating pseudo�ow � a �ow that does not satisfy
�ow balance constraints� For this reason we choose to call the algorithm the
pseudo�ow algorithm�
The main feature that distinguishes the pseudo�ow algorithm from other

known algorithms for the maximum�ow problem is that it does not seek to either
preserve or progress towards feasibility� Instead the algorithm creates pockets�
of nodes so that at optimum there is no residual arc that can carry additional
�ow between an excess pocket� and a de�cit pocket�� The set of nodes in
all the excess pockets� form the source set of a minimum cut and also the
maximum s�excess set�
The certi�cate maintained by our algorithm bears a resemblance to the ba�

sic arcs tree maintained by simplex� It is demonstrated that this certi�cate is
analogous to the concept of a strong basis introduced by Cunningham �C��

if implemented in a certain extended network� permitting violations of �ow
balance constraints� It is further shown that the algorithmic steps taken by our
algorithm are substantially di�erent from those of the simplex and lead to a
di�erent outcome in the next iteration based on the same strong basis in the
given iteration�
The contributions in this paper include�

�� The introduction of the pseudo�ow maximums�excess problem that provides
a new perspective on the maximum �ow problem�

�� A pseudo�ow algorithm for the maximum �ow problem of complexity
O�mn logn��

�� Parametric analysis conducted with the pseudo�ow algorithm that generates
all breakpoints in the same complexity as a single run�

	� A new pseudo�ow�based simplex algorithm for maximum�ow using the low�
est label approach�

�� A parametric analysis simplex method that �nds all possible parameter
breakpoints in the same time as a single run� O�mn logn��

The parametric simplex method is the �rst known parametric implementa�
tion of simplex to date that �nds all breakpoints in the same running time as a
single application�

��� Notation

For P�Q � V � the set of arcs going from P to Q is denoted by� �P�Q� � f�u� v� �
Aju � P and v � Qg� Let the capacity of arc �u� v� be denoted by cuv or c�u� v��
For P�Q � V � P � Q � �� the capacity of the cut separating P from Q is�
C�P�Q� �

P
�u�v���P�Q� cuv� For S � V � let �S � V n S�

For a graph G � �V�A� we denote the number of arcs by m � jAj and the
number of nodes by n � jV j�



An arc �u� v� of an unspeci�ed direction is referred to as edge �u� v
�
�v�� v�� � � � � vk
 denotes an undirected path from v� to vk� That is�
�v�� v�
� � � � � �vk��� vk
 � A�
We use the convention that the capacity of an arc that is not in the graph is

zero� Thus for �a� b� � A and �b� a� �� A� cb�a � ��
The capacity of an edge e is denoted either by c�e� or ce� The �ow on an edge

e is denoted either by f�e� or fe� We use the convention that f�a� b� � �f�b� a��
For a given �ow or pseudo�ow f � the residual capacity of e is denoted by cf �e�
which is ce � fe�
Given a rooted tree� T � Tv is the subtree suspended from node v that contains

all the descendants of v in T � T�v�p�v�� � Tv is the subtree suspended from the
edge �v� p�v�
� An immediate descendant of a node v� a child of v� is denoted by
ch�v�� and the unique immediate ancestor of a node v� the parent of v� by p�v��

� The Maximum Flow Problem and the Maximum
s�Excess Problem

The pseudo�ow algorithm described here ultimately �nds a maximum �ow in
a graph� Rather than solving the problem directly the algorithm solves instead
the maximum s�excess problem�

Problem Name� Maximum s�Excess
Instance� Given a directed graph G � �V�A�� node weights �positive or neg�

ative� wi for all i � V � and nonnegative arc weights cij for all �i� j� � A�
Optimization Problem� Find a subset of nodes S � V such thatP

i�S wi �
P

i�S�j��S cij is maximum�

We elaborate here further on this problem and its relationship to the maxi�
mum �ow and minimum cut problems�
The maximum�ow problem is de�ned on a directed graph with distinguished

source and sink nodes and the arcs adjacent to source and sink� A�s� and A�t��
Gst � �V � fs� tg� A �A�s� �A�t���
The standard formulation of the maximum �ow problem with zero lower

bounds and xij variables indicating the amount of �ow on arc �i� j� is�

Max xts
subject to

P
i xki �

P
j xjk � � k � V

� 	 xij 	 cij 
�i� j� � A�

In this formulation the �rst set of �equality� constraints is called the �ow bal�
ance constraints� The second set of �inequality� constraints is called the capacity
constraints�

De�nition �� The s� excess capacity of a set S � V in the graph Gst � �V �
fs� tg� A�A�s� �A�t�� is� C�fsg� S� �C�S� �S � ftg��



We claim that �nding a subset S � V that maximizes C�fsg� S�� C�S� �S �
ftg� is equivalent to the maximum s�excess problem�

Lemma �� A subset of nodes S � V maximizes C�fsg� S� � C�S� �S � ftg� in
Gst if and only if it is of maximum s�excess in the graph G � �V�A��

We next prove that the s�excess problem is equivalent to the minimum cut
problem�

Lemma �� S is the source set of a minimum cut if and only if it is a set of
maximum s� excess capacity C�s� S� � C�S� �S � ftg� in the graph�

Proof� Given an instance of the s�excess problem� Append to the graph G �
�V�A� the nodes s and t� Assign arcs with capacities equal to the weights of
nodes from s to the nodes of positive weight� Assign arcs with capacities equal
to the absolute value of the weights of nodes of negative weights� from the nodes
to t�
The sum of weights of nodes in S is also the sum of capacities C�fsg� S� �

C�S� ftg� where the �rst term corresponds to positive weights in S� and the
second to negative weights in S�

P
j�S wj �

P
i�S�j��S cij � C�fsg� S�� C�S� ftg�� C�S� �S�

� C�fsg� S�� C�S� �S � ftg��
� C�fsg� V � �C�fsg� �S� �C�S� �S � ftg��
� C�fsg� V � �C�fsg � S� �S � ftg��

The latter term is the capacity of the cut �fsg�S� �S�ftg�� Hence maximizing the
s�excess capacity is equivalent to minimizing the capacity of the cut separating
s from t�
To see that the opposite is true� consider the network �V � fs� tg� A� with

arc capacities� Assign to node v � V a weight that is csv if the node is adjacent
to s and �cvt if the node is adjacent to t� Note that it is always possible to
remove paths of length � from s to t thus avoiding the presence of nodes that
are adjacent to both source and sink� This is done by subtracting from the arcs�
capacities csv� cvt the quantity minfcsv� cvtg� The capacities then translate into
node weights that serve as input to the s�excess problem and satisfy the equalities
above� ut

We conclude that the maximum s�excess problem is a complement of min�
imum cut which in turn is a dual of the maximum �ow problem� As such� its
solution does not contain more �ow information than the solution to the min�
imum cut problem� As we see later� however� it is possible to derive a feasible
�ow of value equal to that of the cut from the certi�cate used in the algorithm�
in O�mn� time�
The reader may wonder about the arbitrary nature of the s�excess problem�

at least in the sense that it has not been previously addressed in the literature�
The explanation is that this problem is a relaxation of the maximum closure
problem where the objective is to �nd� in a node weighted graph� a closed set of



nodes of maximum total weight� In the maximum closure problem it is required
that all successors of each node in the closure set will belong to the set� In the
s�excess problem this requirement is replaced by a penalty assigned to arcs of
immediate successors that are not included in the set� In that sense the s�excess
problem is a relaxation of the maximum closure problem� The proof of Lemma
� is e�ectively an extension of Picard�s proof �Pic��
 demonstrating that the
maximumweight closed set in a graph �maximum closure� is the source set of a
minimum cut�
We provide a detailed account of the use of the pseudo�ow and other algo�

rithms for the maximum closure problem in �Hoc��
� We also explain there how
these algorithms have been used in the mining industry and describe the link to
the algorithm of Lerchs and Grossmann� �LG�	
�

� Preliminaries and De�nitions

Pseudo�ow is an assignment of values to arcs that satisfy the capacity constraints
but not necessarily the �ow balance constraints� Unlike pre�ow� that may violate
the �ow balance constraints only with in�ow exceeding out�ow� pseudo�ow per�
mits the in�ow to be either strictly larger than out�ow �excess� or out�ow strictly
larger than in�ow �de�cit�� Let f be a pseudo�ow vector with � 	 fij 	 cij the
pseudo�ow value assigned to arc �i� j�� Let in�ow �D�� out�ow �D� be the total
amount of �ow incoming and outgoing to and from the set of nodes D� For each
subset of nodes D � V �

excess�D� � in�ow�D� � out�ow �D�
�
P

�u�v���V�fsgnD�D� fu�v �
P

�v�u���D�V�ftgnD� fv�u�

The absolute value of excess that is less than zero is called de�cit� i�e�
�excess�D� � de�cit�D��
Given a rooted tree T � For a subtree Tv � T�v�p�v��� let M�v�p�v�� � Mv �

excess�Tv� and be called the mass of the node v or the arc �v� p�v�
� That is�
the mass is the amount of �ow on �v� p�v�� directed towards the root� A �ow
directed in the opposite direction � from p�v� to v � is interpreted as negative
excess or mass�
We de�ne the extended network as follows� The network Gst is augmented

with a set of arcs � two additional arcs per node� Each node has one arc of
in�nite capacity directed into it from the sink� and one arc of in�nite capacity
directed from it to the source� This construction is shown in Figure �� We refer
to the appended arcs from sink t as the de�cit arcs and the appended arcs to the
source s as the excess arcs� The source and sink nodes are compressed into a �root�
node r� We refer to the extended network�s set of arcs as Aaug� These include� in
addition to the de�cit and excess arcs� also the arcs adjacent to source and sink
� A�s� and A�t�� The extended network is the graph Gaug � �V � frg� Aaug��
Any pseudo�ow on a graph has an equivalent feasible �ow on the extended

network derived from the graph � a node with excess sends the excess back to
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Fig� �� An extended network with excesses and de�cits

the source� and a node with de�cit receives a �ow that balances this de�cit from
the sink�
Throughout our discussion of �ows on extended networks� all the �ows con�

sidered saturate the arcs adjacent to source and sink and thus the status of
these arcs� as saturated� remains invariant� We thus omit repeated reference to
the arcs A�s� and A�t��

� A Normalized Tree

The algorithm maintains a construction that we call a normalized tree after the
use of this term by Lerchs and Grossmann in �LG�	
 for a construction that
inspired ours� Let node r �� V serve as root and represent a contraction of s and
t� Let �V �frg� T � be a tree where T � �A� The children of r are called the roots
of their respective branches or subtrees� The de�cit and excess arcs are only used
to connect r to the roots of the branches�
A normalized tree is a rooted tree in r that induces a forest in �V�A�� We

refer to each rooted tree in the forest as branch� A branch of the normalized
tree rooted at a child of r� ri� Tri is called strong if excess�Tri � � �� and weak
otherwise� All nodes of strong branches are considered strong� and all nodes of
weak branches are considered weak�
A normalized tree is depicted in Figure ��
Consider a rooted forest T n frg in G � �V�A� and a pseudo�ow f in Gst

satisfying the properties�

Property � The pseudo�ow f saturates all source�adjacent arcs and all sink�
adjacent arcs�
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Fig� �� A normalized tree� Each ri is a root of a branch

Property � In every branch all downwards residual capacities are strictly pos�
itive�

Property � The only nodes that do not satisfy �ow balance constraints are the
roots of their respective branches that are adjacent to r in the extended network�

De�nition �� A tree T with pseudo�ow f is called normalized if it satis�es
properties 	� 
� and ��

Property � means� in other words� that in order for T to be a normalized
tree� f has to satisfy �ow balance constraints in the extended network with only
the roots of the branches permitted to send�receive �ows along excess or de�cit
arcs�
We let the excess of a normalized tree T and pseudo�ow f be the sum of

excesses of its strong branches �or strong nodes�� Property � implies that the
excess of a set of strong nodes in a normalized tree� S� satis�es�

excess�S� � in�ow �S� � out�ow �S� � f�fsg� S�  f� �S� S� � f�S� �S�
�f�S� ftg� � C�fsg� S� �C�S� ftg�  f� �S� S� � f�S� �S��

This equality is used to prove the superoptimality of the set of strong nodes �in
the superoptimality Property��
We choose to work with normalized trees that satisfy an optional property

stronger than ��

Property � �unsaturated arcs property	 The tree T has all upwards resid�
ual capacities strictly positive�

Another optional implied property is�

Property 
 All �free arcs of A with �ows strictly between lower and upper
bound are included in T �



With this property all arcs that are not adjacent to root are free� T is thus the
union of all free arcs including some excess and de�cit arcs� The only arcs in T
that are not free are de�cit arcs with � �ow � adjacent to ��de�cit branches� All
out of tree arcs are thus at their upper or at the lower bounds�
The next property � the superoptimality property � is satis�ed by any nor�

malized tree� or equivalently� by any tree�pseudo�ow pair satisfying properties
�� �� and �� The superoptimality of a normalized tree and the conditions for
optimality are stated in the next subsection�

��� The Superoptimality of a Normalized Tree

Property � �superoptimality	 The set of strong nodes of the normalized tree
T is a superoptimal solution to the s�excess problem� The sum of excesses of the
strong branches is an upper bound on the maximum s�excess�

From the proof of the superoptimality property it follows that when all arcs
from S to �S are saturated� then no set of nodes other than S has a larger s�excess�
We thus obtain the optimality condition as a corollary to the superoptimality
property�

Corollary 
 �Optimality condition	� Given a normalized tree� a pseudo�ow
f and the collection of strong nodes in the tree S� If f saturates all arcs in �S� �S�
then S is a maximum s�excess set in the graph�

The next Corollary holds only if Property 	 is satis�ed� It implies minimality
of the optimal solution set S�

Corollary � �Minimality	� Any proper subset of the strong nodes is not a
maximum s�excess set in �V�A���

On the other hand� it is possible to append to the set of strong nodes S any
collection of ��de�cit branches that have no residual arcs to weak nodes without
changing the value of the optimal solution� This leads to a maximal maximum
s�excess set�

� The Description of the Pseudo�ow Algorithm

The algorithm maintains a superoptimal s�excess solution set in the form of
the set of strong nodes of a normalized tree� That is� the sum of excesses of
strong branches is only greater than the maximum s�excess� Each strong branch
forms an excess pocket� with the total excess of the branch assigned to its root�
Within each branch the pseudo�ow is feasible�
Each iteration of the algorithm consists of identifying an infeasibility in the

form of a residual arc from a strong node to a weak node� The arc is then added
in and the tree is updated� The update consists of pushing the entire excess
of the strong branch along a path from the root of the strong branch to the
merger arc �s�� w� and progressing towards the root of the weak branch� The �rst



arc encountered that does not have su�cient residual capacity to accommodate
the pushed �ow gets split and the subtree suspended from that arc becomes a
strong branch with excess equal to the amount of �ow that could not be pushed
through the arc� The process continues along the path till the next bottleneck
arc is encountered

Recall that G � �V�A�� and Af is the set of residual arcs with respect to a
given pseudo�ow f �


�� The Pseudo�ow Algorithm

begin

Initialize 
�s� j� � A�s�� f�s� j� � c�s� j�� 
�j� t� � A�t�� f�j� t� � c�j� t��
For all arcs �i� j� � A� f�i� j� � ��
T � �j�V �r� j
� the branches of the tree are fjgj�V �
Nodes with positive excess are strong� S� and the rest are weak� W �
while �S�W � �Af �� � do

Select �s�� w� � �S�W �
Merge T � T n �r� rs�
 � �s�� w��
Renormalize
Push � � M�r�r

s�
� units of �ow along the path �rs�� � � � � s�� w� � � � � rw� r
�

begin

Let �vi� vi��
 be the next edge on the path�
If cf �vi� vi��� � � augment �ow by �� f�vi� vi���� f�vi� vi���  ��
Else� split f�vi� vi���� � � cf �vi� vi���g�
Set � � cf �vi� vi����
Set f�vi� vi���� c�vi� vi���� i� i  �
end

end

end

procedure split f�a� b��Mg
T � T n �a� b� � �r� a�� M�r�a� �M �
The branch Ta is strong or ��de�cit with excess M �
Af � Af � f�b� a�g n f�a� b�g�
end

The push step� in which we augment �ow by � if cf �vi� vi��� � �� can be
replaced by augmentation if cf �vi� vi��� � �� The algorithm remains correct�
but the set of strong nodes is no longer minimal among maximum s�excess sets�
and will not satisfy Property 	� We prove in the expanded version of this paper
that the tree maintained is indeed normalized� which establishes the algorithm�s
correctness�




�� Initialization

We choose an initial normalized tree with each node as a separate branch for
which the node serves as root� The corresponding pseudo�ow saturates all arcs
adjacent to source and to sink� Thus all nodes adjacent to source are strong
nodes� and all those adjacent to sink are weak nodes� All the remaining nodes
have zero in�ow and out�ow� and are thus of � de�cit and set as weak� If a node
is adjacent to both source and sink� then the lower capacity arc among the two
is removed� and the other has that value subtracted from it� Therefore each node
is uniquely identi�ed with being adjacent to either source or sink or to neither�


�� Termination

The algorithm terminates when there is no residual arc between any strong and
weak nodes�
From Corollary � we conclude that at termination the set of strong nodes

is a minimal source set of a minimum cut� In other words� any proper subset
of the set of strong nodes cannot be a source set of a minimum cut� It will be
necessary to identify additional optimal solutions� and in particular a minimum
cut with maximal source set for the parametric analysis�
To that end� we identify the ��de�cit branches among the weak branches� The

set of strong branches can be appended with any collection of ��de�cit branches
without residual arcs to weak nodes for an alternative optimal solution� The
collection of all such ��de�cit branches with the strong nodes forms the sink set
of a minimumcut that ismaximal� To see that� consider an analogue of Corollary
� that demonstrates that no proper subset of a weak branch �of negative de�cit�
can be in a source set of a minimum cut�


�� About Normalized Trees and Feasible Flows

Given any tree in the extended network� and a speci�cation of pseudo�ow values
on the out of tree arcs� it is possible to determine in linear time O�n� whether
the tree is normalized� If the tree is not normalized� then the process is used to
derive a normalized tree which consists of a subset of the arcs of the given tree�
Given a normalized tree it is possible to derive in O�n� time the values of the
pseudo�ow on the tree arcs� and in time O�mn� to derive an associated feasible
�ow� At termination� that feasible �ow is a maximum �ow�


�
 Variants of Pseudo�ow Algorithm and and their Complexity

Implementing the pseudo�ow algorithm in its generic form results in complexity
of O�nM�� iterations� for M� � C�fsg� V � � the sum of all capacities of arcs
adjacent to source� This running time is not polynomial�
A natural variant to apply is capacity scaling� Capacity scaling is imple�

mented in a straightforward way with running time of O�mn logM �� where M is



the largest capacity of source�adjacent or sink�adjacent arcs� This running time
is polynomial but not strongly polynomial�
Our strongly polynomial variant relies on the lowest label selection rule of a

merger arc� With this selection rule� our algorithm runs in strongly polynomial
time� O�mn logn��
The lowest label selection rule is described recursively� Initially all nodes are

assigned the label �� �v � � for all v � V � The arc �s�� w� selected is such that w
is a lowest label weak node among all possible active arcs�
Upon a merger using the arc �s�� w� the label of the strong node s� becomes

the label of w plus � and all nodes of the strong branch with labels smaller than
that of s� are updated to be equal to the label of s�� formally� �s� � �w  � and
for all nodes v in the same branch with s�� �v � maxf�v� �s�g�
The lowest label rule guarantees a bound of mn on the total number of

iterations� In the phase implementation all weak nodes of the same label are
processed in one phase� The phase implementation runs in time O�mn logn��
The lowest label implementation of the algorithm is particulary suitable for

parameteric implementation� The algorithm has features that make it especially
easy to adjust to changes in capacities� The common type of analysis �nding all
breakpoints in parametric capacities of arcs adjacent to source and sink that are
linear functions of the parameter � can also be implemented in O�mn logn��

	 Pseudo�ow�Based Simplex

The simplex algorithm adapted to the s�excess problem maintains a pseudo�ow
with all source and sink adjacent arcs saturated� At termination� the optimal
solution delivered by this s�excess version of simplex identi�es a minimum cut�
The solution is optimal when only source adjacent nodes have positive excess
and only sink adjacent nodes have de�cits� Additional running time is required
to reconstruct the feasible �ows on the given tree� that constitute maximum
�ow�
We show in the full version of the paper that the concept of a strong basis�

introduced by Cunningham �C��
� is a tree in the extended network satisfying
Properties �� � and ��

��� Pseudo�owBased Simplex Iteration

An entering arc is a merger arc� It completes a cycle in the residual graph� It
is thus an arc between two branches� We include an auxiliary arc from sink to
source� thus the merger arc completes a cycle� Alternatively we shrink source
and sink into a single node r as before�
Nodes that are on the source side of the tree are referred to as strong� and

those that are on the sink side� as weak� with the notation of S and W respec�
tively� Let an entering arc with positive residual capacity be �s�� w�� The cycle
created is �r� rs�� � � � � s�� w� � � � � rw� r
�



The largest amount of the �ow that can be augmented along the cycle is
the bottleneck residual capacity along the cycle� The �rst arc attaining this
bottleneck capacity is the leaving arc�

In the Simpelx the amount of �ow pushed is determined by the bottleneck
capacity� In the pseudo�ow algorithm the entire excess is pushed even though it
may be blocked by one or more arcs that have insu�cient residual capacity�

The use of the lowest label selection rule in the pseudo�ow�based simplex
algorithm for the choice of an entering arc leads to precisely the same complexity
as that of our pseudo�ow algorithm� O�mn logn��

��� Parametric Analysis for Pseudo�owBased Simplex

Given a series of � parameter values for �� f��� � � � � ��g� Let the source adja�
cent arcs capacities and the sink adjacent arc capacities be a linear function
of � with the source adjacent capacities monotone nondecreasing with � and
the sink adjacent capacities monotone nonincreasing with �� Recently Goldfarb
and Chen �GC��
 presented a dual simplex method with running time O�mn���
This method is adaptable to use for sensitivity analysis for such a sequence of
� parameter values� in the same amount of time as a single run� O�mn�  n���
The algorithm� however� does not generate all parameter breakpoints in a com�
plete parametric analysis� Our algorithm is the �rst simplex algorithm that does
generate all parameter breakpoints�

The parametric analysis process is not described here� We only mention that
in order to implement the complete parametric analysis we must recover from
the simplex solution the minimal and maximal source sets minimum cuts� To do
that� we scan the tree at the end of each computation for one parameter value�
and separate ��de�cit branches� This process is equivalent to the normalization
of a tree� It adds only linear time to the running time and may be viewd as basis
adjustment� The running time is linear in the number of nodes in the currently
computed graph�

The overall running time of the procedure is identical to that of the pseud�
o�ow algorithm with lowest label� O�mn logn n���

��� Comparing Simplex to Pseudo�ow

Although the simplex implementation in the extended network has the same
complexity as that of the pseudo�ow algorithm� the two algorithms are not the
same� Starting from the same normalized tree a simplex iteration will produce
di�erent trees in the following iteration� The pseudo�ow algorithm tends to pro�
duce trees that are shallower than those produced by simplex thus reducing the
average work per iteration �which depends on the length of the path from the
root to the merger node�� Other details on the similarities and di�erences be�
tween simplex and the pseudo�ow algorithm are provided in the full version of
the paper�
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