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We introduce a novel criterion in clustering that seeks clusters with limited range
of values associated with each cluster’s elements. In clustering or classification the

objective is to partition a set of objects into subsets, called clusters or classes, con-

sisting of similar objects so that different clusters are as dissimilar as possible. We

propose a number of objective functions that employ the range of the clusters as part

of the objective function. Several of the proposed objectives mimic objectives based

on sums of similarities. These objective functions are motivated by image segmen-

tation problems, where the diameter, or range of values associated with objects in

each cluster, should be small. It is demonstrated that range-based problems are in

general easier, in terms of their complexity, than the analogous similarity-sum prob-

lems. Several of the problems we present could therefore be viable alternatives to

existing clustering problems which are NP-hard, offering the advantage of efficient

algorithms.
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1 INTRODUCTION

The typical clustering and classification problem is to partition a set of objects into subsets, called clusters, so that each subset

consists of “similar” elements, and the different clusters are as dissimilar as possible. We introduce novel clustering criteria that

seek clusters with limited range of values associated with each cluster’s objects (or elements). Each of the objects to be clustered

has a scalar value associated with it and the range of a cluster is the difference between the maximum and the minimum values

of the elements in the cluster. We show that for a partition into k clusters the problem of minimizing the maximum range of a

cluster and the problem of minimizing the sum of the ranges of the clusters are solvable in polynomial time. Other problems

explored here are the k-normalized range sum, the k-range cut and the k-normalized range cut, and we provide particularly

efficient algorithms for the first two and demonstrate that the last one is NP-complete.

A good model for separation between clusters is the minimum cut, applied to the graph with nodes representing objects,

and edges between pairs of nodes associated with weights of the similarity between the respective nodes. The minimum 2-cut

problem is to find a partition of the graph into two nonempty components so that the sum of similarity weights on edges with

one endpoint in one cluster and the second endpoint in the other cluster, is minimum. Thus the similarity between the two

resulting clusters of the bipartition is minimum. This notion of cut extends to multiple clusters, as in the minimum k-cut problem

where the objective is to find a partition into k nonempty components so that the sum of weights of edges with endpoints in

different components, or the inter-similarity, is minimum [7]. The concept of a cut plays an important role in image segmentation

problems, where the goal is to partition the image into meaningful objects. The problems of k-range cut and k-normalized range

cut combine the range objective with a form of the cut objective. The problems’ formulations are given in Tables 1 and 2, and

the complexity results and run times of the algorithms are given in Table 3.
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TABLE 1 Formulations of bipartition range-clustering problems

Problem name Formulation

min range sum min∅⊂S⊂V range(S) + range(S)
min max range min∅⊂S⊂V max{range(S), range(S)}

min normalized range sum min∅⊂S⊂V
range(S)

f (|S|) + range(S)
f (|S|)

min range cut min∅⊂S⊂V range(S) + range(S) + C(S, S)

min normalized range cut min∅⊂S⊂V
range(S)

f (|S|) + range(S)
f (|S|) + C(S, S)

TABLE 2 Formulations of k-partition range-clustering problems for k≥ 3

Problem name Formulation

min k-range sum min(S1 ,…,Sk )

k∑
i=1

range(Si)

min max k range min(S1 ,…,Sk )(maxi∈{1,…,k}range(Si))

min k-normalized range sum min(S1 ,…,Sk )

k∑
i=1

range(Si)
f (|Si|)

min k-range cut min(S1 ,…,Sk )

k∑
i=1

range(Si) +
k−1∑
i=1

k∑
j=i+1

C(Si, Sj)

min k-normalized range cut min(S1 ,…,Sk )

k∑
i=1

range(Si)
f (|Si|) +

k−1∑
i=1

k∑
j=i+1

C(Si, Sj)

TABLE 3 Summary of the range-clustering problems and algorithmic results

min problem Bipartition, k= 2 k-Partition, k≥ 3

k-Range sum Polynomial time, O(n) Polynomial time, O(n)

max k-range O(log n) Polynomial time, O(nlog3n)

k-Normalized range suma Polynomial time, O(n) Polynomial time, O(n2k)

k-Range cut Polynomial time, O
(
𝑚𝑛2 log

n2

m

)
) Polynomial O(nk2 ) for k fixed NP-complete for general k

k-Normalized range cut NP-complete, even if f (|S|)= |S| NP-complete, even if f (|S|)= |S|

af (|S|) is monotone nondecreasing in |S|.

The motivation for our study of range problems originates in image segmentation. In a typical image segmentation set-up

there are similarity weights assigned to each pair of adjacent pixels (which are the objects for the image clustering/segmentation)

(9, 18). However, it is often the case that each pixel has in addition some scalar value associated with it, such as its color intensity,

or its texture (computed with respect to a neighborhood of the pixel). The goal in this type of clustering is then not only to have

the pixels similar to each other, but also to have the scalar values associated with pixels in the same cluster close enough to each

other. This is the case, for instance, in segmenting knee cartilage as in [14], where pixels of cartilage tissue have a distinctive

texture. The goal then is to ensure that all pixels within each segmented object have only a limited variability in their range of

texture values.

We devise a family of range-based clustering problems that are analogous to commonly considered goals in clustering. We

demonstrate that, in general, range problems are easier to solve (in terms of complexity) than their respective total similarity

problems. One such problem is the NP-hard normalized cut problem [18], defined below in Equation 1.2. In contrast, we

demonstrate here that an analogous range objective problem similar to normalized cut is polynomial time solvable.

The term range-clustering was previously used in [17]. However, the context there is to provide an improved computation of

similarities, rather than to generate meaningful clusters as is the case here. We believe that here is the first time that the concept

of range is utilized as a clustering criterion.

To formalize the discussion and problem definitions, we introduce relevant graph notation and other preliminaries.

1.1 Notations and preliminaries
Let G= (V , E) be an undirected graph where the nodes of the graph correspond to elements (also referred to as objects) to be

clustered. We use the standard notation of n for the number of nodes |V | and m for the number of edges |E|. We refer to the

elements as the set {v1, …, vn} and the corresponding nodes in the graph as {1, …, n}. There are edge weights wij associated

with each edge [i, j] ∈ E representing the “similarity” of nodes i and j. This similarity weight is in turn equivalent to the penalty

of not assigning the respective pair of elements vi and vj to the same cluster. Higher similarity is associated with higher weights.

A bi-partition of a graph is called a cut, (S, S) = {[ij]|i ∈ S, j ∈ S}, where S = V∖S. The capacity of a cut (S, S) is the sum of
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the weights of the edges, with one endpoint in S and the other in S: C(S, S) =
∑

i∈S,j∈S,[i,j]∈Ew𝑖𝑗 . A minimum capacity cut, or

minimum cut, is a bipartition of the nodes into two nonempty sets (S, S) that minimizes C(S, S). A bipartition resulting from a

minimum cut has S and S as dissimilar as possible in terms of the sum of similarities between their elements.

Two versions of the minimum cut problem are 2-cut and s, t-cut. The former is the bipartition of V into two nonempty sets,

S and its complement S, (S, S). For designated nodes s, t ∈ V , (S, S) is said to be an s, t-cut, if s ∈ S and t ∈ S. A minimum 2-cut

or s, t-cut are those bipartitions that minimize C(S, S). When there is no ambiguity, we will simply refer to the min-cut.
A partition of the set of elements, V , into more than two sets, k-partition, is a collection of k≥ 3 disjoint nonempty sets

{Si}k
i=1

so that ∪k
i=1

Si = V . A k-partition is denoted by (S1, …, Sk). We refer to a partition into k clusters as k-clustering.

The weighted degree of node i is the sum of weights adjacent to i, di =
∑

j∣[i,j]∈Ew𝑖𝑗 . The weight of a subset of nodes B⊆V ,

referred to as the volume of B, is the sum of weighted degrees of nodes in B, d(B) =
∑

i∶vi∈Bdi.

The concept of shrinking of nodes is utilized here. Consider a graph G= (V , E) with edge weights wij associated with each

edge [i, j] ∈ E, and a specific pair of nodes p and q. The process of shrinking node p into q is to remove node p from the

graph, and appending to node q all edges formerly adjacent to p. This can be done in two equivalent methods. In the first, we let

N(p)= {v|[p, v] ∈ E}, remove the set of edges {[p, v]|v ∈ N(p)} and add the set of edges {[q, v]|v ∈ N(p)} with their respective

weights. The second method is to simply add an edge [p, q] of infinite capacity (weight). This ensures that p and q are always

together in the same set when the minimum cut criterion is used.

The input to range-clustering problems includes scalar values associated with the elements. Respectively, the input graphs

for range-clustering include node weights that are distinct scalar values associated with the nodes of V , {𝛼1, …, 𝛼n}, where 𝛼i
are rational numbers. These scalars are necessarily rational and of finite number of significant digits (so the input is finite). The

assumption of distinct scalar values is important for the algorithms presented here. This is because equal values of the scalars

may lead to an exponential number of equal-valued solutions, all of which may have to be explored by the algorithms. This

assumption of distinct scalar values is however shown next to hold without loss of generality.

If there are equal-valued scalars, a standard perturbation process is applied: This is done by adding different powers of a

small enough 𝜀 to each of the equal values. (Such a process is applied in linear programming algorithms to avoid degeneracy

and cycling.) For instance, the value of 𝜀 can be selected to be the smallest resolution of any 𝛼i. That is, multiply all 𝛼i by a large

enough number, say M, so they are all integers, and then set 𝜀 = 1

2
. For 𝛼i = 𝛼j, we set their perturbed values to 𝛼i = 𝛼i + 𝜀i and

𝛼j = 𝛼j + 𝜀j. The perturbed values are then all distinct, and it is easy to see that an optimal solution to the perturbed problem,

in terms of the range, is one of the optimal solutions to the unperturbed problem. If the problem involves similarity weights as

well, the values of 𝜀 would depend on the smallest resolution among the scalar values of 𝛼 as well as the values of wij.

Therefore, it is assumed without loss of generality that 𝛼1 <𝛼2 < · · ·<𝛼n. We let 𝛼i be associated with the element vi ∈ V
so that v1 is the element with the smallest value 𝛼1 and vn is the element with the largest value 𝛼n.

For any nonempty set of elements B⊆V the maximum, minimum and range of B are defined as:

max(B) = maxi∶vi∈B{𝛼i}
min(B) = mini∶vi∈B{𝛼i}

range(B) = max(B) − min(B).

Note that the range of an empty set is undefined, and is not relevant here. This is because we are interested only in partitions

of the set of elements into nonempty clusters of bounded range. Hence, an empty cluster is not considered. Note also that the

range of a singleton is 0.

We say that a set S⊆V is a subset of an interval I = [a, b] if S⊆ {j|a≤ 𝛼j ≤ b} and min(S)= a, max(S)= b. We denote “S a

subset of I” by S⊆ I.

The complexity model used here is the real computation model which allows arithmetic operations on real numbers,

regardless of the number of significant digits, to count as a single operation [1].

We next introduce our range-based clustering problems and review related known clustering objectives that utilize

similarities. Highlights of the differences in complexity between the range-based and known clustering objective are discussed.

1.2 Range-based clustering problems and related clustering problems utilizing cuts
and similarities
We introduce here a new collection of range-based problems and discuss related known clustering problems that utilize cuts and

similarities. First we present 2-clustering range problems. The list of the names and formulations of the range-based clustering

problems for bipartitioning problems is given in Table 1.

The simplest case of bipartition range-based problems considered is the min range sum. This objective function seeks to

minimize the range of S and S simultaneously, and it is shown here to be solvable in polynomial time. A weighted version of
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the problem is the min weighted range sum which permits one to emphasize the limited range of S, more than that of S. The

min weighted range sum is also solved in polynomial time, as shown in section 2. The min max range problem is to minimize

the bottleneck range between the two sets of the bipartition.

Many commonly used clustering models utilize the notion of minimum cut. The input to such problems is a graph G= (V , E)

and similarity weights associated with the edges. Bipartition clustering is to partition the set of elements V into two nonempty

disjoint sets, S and its complement S. The capacity, or weight, of the cut between S and S, C(S, S), signifies the degree of

similarity between S and S. To generate a set S that is highly dissimilar to its complement one seeks a minimum cut partition

into S and S that minimizes C(S, S). This in turn also maximizes the total similarity within the two sets.

It has long been observed that a minimum cut in a graph with edge similarity weights tends to create a bipartition that has

one side very small in size, containing a singleton in extreme cases [19]. This is so because the number of edges between a single

node and the rest of the graph tends to be much smaller than between two comparable-sized sets. To correct for such unbalanced

bipartitions, Shi and Malik, in the context of image segmentation [18], proposed the normalized cut as an alternative criterion

to minimum cut. The normalized cut (NC) optimization problem is to find a bipartition of V , (S, S), minimizing:

(NC) min
∅⊂S⊂V

C(S, S)
d(S)

+ C(S, S)
d(S)

. (1.1)

The normalized cut problem (NC) was shown to be NP-hard in [18] by a reduction from set partitioning. Because set

partitioning is weakly NP-hard, this only proves that normalized cut is at least weakly NP-hard. The problem is however strongly

NP-hard with a reduction from the balanced cut problem, which is sketched below for an easier problem. The essence of the

difficulty of NC derives from the fact that in the objective function of NC, the one ratio term with the smaller value of d() is at

least
1

2
of the objective value. Therefore, this objective function drives the segment S and its complement to be approximately

of equal sizes. Indeed, it is shown in [12] that the problem of minimizing the first term of NC, min∅⊂S⊂V
C(S,S)
d(S)

, is polynomial

time solvable.

The following problem is also a form of normalizing the cut with respect to the size of the sets. This problem is associated

with finding the graph expander ratio and is known to be NP-hard [13]. It is referred to as size-normalized cut.

(size-NC) min
∅⊂S⊂V

C(S, S)
∣ S ∣

+ C(S, S)
∣ S ∣

(1.2)

Note that like NC, the objective function of size-NC drives the segment S and its complement to be approximately of equal sizes.

The balanced cut problem is to find a bipartition cut of minimum weight such that both sets in the bipartition contain half

of the nodes of the graph, (or min{|S|, |S|} ≤ c ∣ V ∣ for a constant c ∈
(

0,
1

2

)
). This problem is also known as minimum cut

into bounded sets, proved NP-complete in [5]. For an edge weighted graph G with total sum of edge weights equal to M, we

scale all the edge weights by M. Since the numerator then is very small, an optimal solution is attained for half the nodes in

the source set and the other half in the sink set, while minimizing the cut value, which is an optimal solution for the respective

balanced cut problem. Therefore the size-NC is a strongly NP-hard problem.

The min normalized range sum is a range-based objective analogous to NC and size-NC. Unlike the normalized cut problem,

this problem is shown here to be polynomial time solvable for f (|S|) monotone nondecreasing in |S|.

For the next two range problems, min range cut and min normalized range cut, the input consists of a graph G= (V , E), edge

weights (similarities) wij for all [i, j] ∈ E, and scalars 𝛼i associated with each node i ∈ V . The problems min range cut and min

normalized range cut are generated by adding a minimum cut capacity term to the objective functions of min range cut and min

normalized range cut respectively. The min range cut problem is shown here to be polynomial time solvable, whereas the min

normalized range cut is proved to be NP-hard, even for f (|S|)= |S|. Thus in the latter problem, the addition of the minimum cut

term to the objective changes its status from a polynomial problem to an NP-hard problem.

A sample of k-clustering problems for k≥ 3 that utilize similarities include:

1. The minimum k-cut problem seeks a k partition so that the total similarity between all k clusters is minimized. This

similarity is measured by the sum of weights of edges that have endpoints in different clusters. The minimum k-cut

problem is NP-hard, but can be solved in polynomial time for fixed k [7]. The minimum 2-cut problem is a polynomial

time solvable special case of the k-cut problem where k= 2.

2. Clustering into k subsets of constrained size: Feo et al. [3] considered this problem in the context of VLSI (Very Large

Scale Integrated Circuits) design application and gave a heuristic solution. This problem is NP-hard even for partition

into two clusters. In this formulation, the requirement that the size of the sets is bounded, say by a fraction (such as half)

of the total number of elements, makes the problem equivalent to the balanced cut problem, which is NP-hard.

3. The extension of normalized cut (NC) to k-clustering is min(S1,S2,…,Sk)
∑k

i=1

C(Si,Si)
d(Si)

, which is obviously NP-hard as well.
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The respective formulations of k-partition range-based problems for k≥ 3, that generalize the 2-clustering objectives, are pre-

sented in Table 2. The min k-normalized range sum problem is analogous to the k-normalized cut. The problems of min k-range

cut and min k-normalized range cut are generated by adding the k-cut objective to the respective objectives of min k-range sum

and min k-normalized range sum respectively.

Among our results for k-clustering range problems, the min max k range, min k-range sum and min k-normalized range sum

problems are shown to be polynomial time solvable. The min k-normalized range cut problem is proved to be NP-hard. The

min k-range cut problem is polynomial for fixed k, but proved to be NP-hard for general k. The complexity results are summarized

in Table 3 under the assumption that the input scalar values are given sorted. This assumption is made in order to highlight the

fact that the running time for solving some of the problems is faster than that required to sort the n values, O(n log n).

1.2.1 Paper overview
The remainder of the paper is organized as follows: sections 2 to 4 present polynomial time algorithms for solving the min

range sum, the min max range, and the min normalized range sum problems, respectively. In section 5 we describe a polynomial

time algorithm for solving the min range cut problem which uses a parametric cut procedure. In section 6 the min normalized

range cut problem is proved to be NP-hard. Section 7 provides algorithms and associated complexity results for the respective

k-clustering problems for k≥ 3. An experiment to test the applicability of a range-based algorithm for image segmentation tasks

is provided in section 8. Concluding remarks are given in section 9.

2 THE MINIMUM RANGE SUM PROBLEM

We let Z(S) be the objective value for the min range sum problem with the set S, and let S* be an optimal solution to the problem:

Z(S∗) = min
∅⊂S⊂V

Z(S) = min
∅⊂S⊂V

range(S) + range(S).

Using the definition of range(⋅), this problem may be written as:

min
∅⊂S⊂V

max(S) − min(S) + max(S) − min(S)

Recall that the elements are indexed according to their respective values of 𝛼, 𝛼1 < · · ·<𝛼n. Therefore element v1 is associated

with 𝛼1 and element vn with 𝛼n. Without loss of generality, we can assume v1 ∈ S; thus min(S)= 𝛼1. The next lemma proves

that in an optimal solution the element with the largest value, vn, belongs to S:

Lemma 1. In every optimal solution to the min range sum problem, v1 ∈ S and vn ∈ S.

Proof. If v1 ∈ S, then S and S may be interchanged with no change to the value of the objective function. When v1,

vn ∈ S, the objective value can be no lower than 𝛼n − 𝛼1. However, the solution S′ =V ⧵vn and S
′
= vn has an objective

value that is at most 𝛼n− 1 − 𝛼1 with vn ∈ S
′
. So a solution that does not contain both v1 and vn in S is strictly better. ▪

Therefore, we can assume that max(S) = 𝛼n and min(S)= 𝛼1. A more general lemma proves that there exists an optimal

solution with max(S) ≤ min(S) (Figure 1):

Lemma 2. There is an optimal solution to the min range sum problem with max(S) ≤ min(S).

Proof. Suppose not. Let (S, S) be a feasible solution with max(S) = 𝛼j > 𝛼𝓁 = min(S). Thus 1<𝓁 < j< n. Construct

another feasible solution by letting S′ = S{vj, vj− 1, …, v𝓁} and S′ = S ∪ {vj, vj−1,… , v𝓁}. The solution (S′, S′) is feasible

since S′ and S′ are nonempty. Note that the maximum and minimum elements of S′ are the same as those of S, and thus

the range for both is the same. However, the objective value Z(S′) can only be smaller than Z(S):

Z(S′) = max(S′) − min(S′) + max(S′) − min(S′) = 𝛼𝓁−1 − 𝛼1 − (𝛼n − 𝛼𝓁) =

max(S) − (𝛼j − 𝛼𝓁−1) − min(S) + max(S) − min(S) =
Z(S) − (𝛼j − 𝛼𝓁−1) ≤ Z(S).

Thus there is an optimal solution in which range(S) and range(S) form two nonoverlapping intervals. ▪

FIGURE 1 The elements of V arranged on the real line with range(S) and range(S) for S= {v1, v2, …, vj} and S = {vj+1, vj+2,… , vn}
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Consider the elements of V arranged on the real line, where each element vi is placed at position 𝛼i. We observe that the

largest gap between two consecutive elements plays a role in the min range sum partition:

Corollary 1. If p* corresponds to the index of the largest value in the set of gaps 𝒢 = {𝛼p+1 − 𝛼p|, p = 1,… , n}, then

an optimal solution to the min range sum problem is S = {v1, v2,… , vp∗} and S = {vp∗+1, vp∗+2,… , vn} with an optimal

value of 𝛼p∗ − 𝛼1 + 𝛼n − 𝛼p∗+1.

Proof. It was shown in Lemma 1 that min(S)= 𝛼1 and max(S) = 𝛼n. Thus the objective is Z(S∗) = min∅⊂S⊂V max(S)−
𝛼1 + 𝛼n − min(S). This problem is then equivalent to the maximization problem: max∅⊂S⊂V min(S) − max(S) which is to

maximize the gap between the largest element of S and the smallest element of S as stated. ▪

Finding the largest gap requires O(n) arithmetic operations and comparisons. This is generalized for k-partitions in section

7.1 with the same run time, albeit with a more involved algorithm.

We comment that the algorithm for min range sum can be extended to a weighted version of the problem, weighted minimum
range sum. The weighted minimum range sum problem, for 𝛾 ∈ (0, 1), is:

min
∅⊂S⊂V

Z(S) = min
∅⊂S⊂V

range(S) + 𝛾range(S).

This weighted problem is also solved in O(n) time. This is because Lemma 2 holds also for the weighted variant. The

algorithm is to compare the n values of 𝛼n − 𝛼p+ 1 + 𝛾(𝛼p − 𝛼1) and select the smallest.

3 MIN MAX RANGE

Recall that the problem of min max range is min∅⊂S⊂V max{range(S), range(S)}. This problem is solved relatively easily: Let

𝛼
(

1

2

)
= 𝛼1+𝛼n

2
. Next, identify the index i* such that,

𝛼i∗ ≤ 𝛼
(

1

2

)
< 𝛼i∗+1.

We now let S= {1, …, i*} and S = {i∗ + 1,… , n}. The minimum of max{range(S), range(S)} is attained for max{𝛼i∗ − 𝛼1, 𝛼n −
𝛼i∗}. Since finding i* in the sorted array can be done with binary search in O(logn) steps, this is the complexity of solving the

min max range problem.

4 MIN NORMALIZED RANGE SUM

In the min normalized range sum problem, the range of each segment is divided by a monotone nondecreasing function of the

number of elements in that segment. The problem is to find a partition (S, S) that attains the minimum for the problem:

min
∅⊂S⊂V

range(S)
f (|S|) +

range(S)
f (|S|) .

This can be rewritten as:

min
∅⊂S⊂V

max(S) − min(S)
f (|S|) + max(S) − min(S)

f (|S|) .

We note that since the values of max(S),min(S),max(S),min(S) are all in the set {𝛼1, 𝛼2, …, 𝛼n}, all possible combinations

may be enumerated in polynomial time. The proof of Lemma 3, stated next, is similar to that of Lemma 1:

Lemma 3. There exists an optimal solution to the min normalized range sum problem with v1 ∈ S and vn ∈ S.

Proof. If v1 ∈ S, then S and S may be interchanged with no change to the value of the objective function. Due to

monotonicity of f (.), and the nonemptiness requirement on S, we know f (n− 1)≥ f (|S|). Therefore, when v1, vn ∈ S, the

objective value can be no lower than
𝛼n−𝛼1

f (n−1)
. This is attained for instance for the solution S=V ⧵vi and S = vi for 1< i< n.

However the solution S′ =V ⧵vn and S
′
= vn has an objective value that is at most

𝛼n−1−𝛼1

f (n−1)
with vn ∈ S

′
. ▪

A generalization of Lemma 2 states that in an optimal solution the two intervals representing range(S) and range(S) do not

overlap:



HOCHBAUM 7

Lemma 4. For any feasible solution (S, S) to the min normalized range sum problem with max(S) > min(S), there is a
feasible solution (S′, S

′
) with max(S′) ≤ min(S′) and a lower objective function value.

Proof. For a feasible solution (S, S) with max(S) > min(S), define S′ = {v1, …, v|S|} and S
′
= {v∣S∣+1,… , vn}. Note that

since |S|= |S′| and ∣ S ∣=∣ S
′
∣, the denominators stay the same. However, range(S)≥ range(S′) and range(S) ≥ range(S

′
),

so the objective function value is lower for (S′, S
′
). ▪

This implies that for an optimal solution (S, S) with max(S)= 𝛼i, min(S) = 𝛼i+1. It is therefore sufficient to enumerate the

n− 1 nonoverlapping bipartitions in order to solve the min normalized range sum problem. With the element indexed i* so that:

i∗ = arg min
i=1,…,n−1

𝛼i − 𝛼1

f (i)
+ 𝛼n − 𝛼i+1

f (n − i)
,

the optimal solution is S = {v1,… , vi∗} and S = {vi∗+1,… , vn} with an objective function value of
𝛼i∗−𝛼1

f (i∗)
+ 𝛼n−𝛼i∗+1

f (n−i∗)
. The

complexity of this algorithm is O(n).

5 MIN RANGE CUT

The min range cut problem is to find the partition (S, S) that solves:

min∅⊂S⊂Vrange(S) + range(S) + C(S, S).

As a result of adding the cut to the objective function, some of the properties from the previous sections no longer apply.

For example, we may not assume that the elements with the largest and smallest values, v1 and vn, are in different clusters as

the weight on the edge between them, w1, n, could be infinite hence forcing them to be into the same cluster.

We associate with any partition into S and S, two respective intervals, I(S)= I1 = [min(S), max(S)] and I(S) = I2 =
[min(S),max(S)]. Since (S, S) is a partition, the endpoints of these two intervals are four distinct values such that two of the four

endpoints must be 𝛼1 and 𝛼n, and the remaining two endpoints, 𝛼p and 𝛼q, are selected from {𝛼2, …, 𝛼n− 1}. We say that the

pair of intervals I1 and I2 is feasible if {𝛼1, 𝛼2, …, 𝛼n}⊆ I1 ∪ I2. Given 𝛼p and 𝛼q for 2≤ p< q≤ n− 1, then, unless p= q− 1,

there is one feasible choice of the two intervals, as [𝛼1, 𝛼q] and [𝛼p, 𝛼n]. If p= q− 1 then both choices of the two intervals: the

pair [𝛼1, 𝛼p+ 1], [𝛼p, 𝛼n], and the pair [𝛼1, 𝛼p], [𝛼p+ 1, 𝛼n], are feasible in that their union contains all the values. For the given

selection of 𝛼p and 𝛼q there is a second choice of the interval pair [𝛼1, 𝛼n] and [𝛼p, 𝛼q]. It follows that there are O(n2) feasible

choices of I1 and I2 pairs.

Recall that a subset S of interval I is denoted by S⊆ I. The min range cut problem is equivalent to the problem of finding a

pair of feasible intervals minimizing the objective. We call this problem the min interval-range cut problem:

minI1,I2 feasiblemin∅⊂S⊆I1,∅⊆S⊆I2
range(I1) + range(I2) + C(S, S).

The min interval-range cut problem can be equivalently rewritten as:

minI1,I2 feasiblerange(I1) + range(I2) + min∅⊂S⊆I1,∅⊂S⊆I2
C(S, S).

Any feasible solution to min interval-range cut is a feasible solution for the min range cut problem and vice versa. It is

possible that for a feasible pair of intervals, the objective value of the interval-range cut with an implied pair of sets S and S has

the range of S or the range of S strictly greater than the range of the respective intervals and therefore larger than the respective

objective value for range cut. This occurs when either one of the sets S and S in the optimal solution for I1 and I2, is strictly

contained in either I1 or I2 and hence has smaller range. In that case the selection of I1, I2, while feasible, is not optimal, as

there exists another selection pair of feasible intervals I′
1
, I′

2
, such that I′

1
⊆ I1, and I′

2
⊆ I2, with a strictly better objective value.

Proposition 1. The optimal solution of min range cut problem is identical to the optimal solution of min interval-range

cut problem.

Proof. Let S* and S∗ be an optimal solution to min range cut. Then, I1
* = [𝛼1, max(S*)] and I∗

2
= [min(S∗, 𝛼n] are the

arguments of the optimal solution to min interval-range cut. ▪

In order to find an optimal solution for min range cut, it is therefore sufficient to enumerate all O(n2) pairs of feasible

intervals, and for each pair of intervals I1 and I2, to solve the respective min-cut problem min∅⊂S⊆I1,∅⊂S⊆I2
C(S, S). We now

elaborate on how to solve the min-cut problem for a given feasible pair of intervals I1 and I2.



8 HOCHBAUM

FIGURE 2 The s, t graph G′ for (VS,VS,VF) induced by the intervals pair I1, I2

The elements of V are partitioned into (VS,VS,VF), as follows:

VF = {i ∈ V|i ∈ I1 ∩ I2}
VS = {i ∈ V|i ∈ I1 ⧵ VF}
VS = {i ∈ V|i ∈ I2 ⧵ VF}.

By construction, any solution to the range cut problem for this given pair of intervals satisfies VS ⊆ S and VS ⊆ S. Because the

endpoints of the two intervals are distinct, both VS and VS are nonempty. It remains to partition VF and allocate its elements to

S and S so that the cut value is minimized. Namely,

min∅⊂S⊆I1,∅⊂S⊆I2
C(S, S) = minS⊆VF C(S, S).

In cases where VF =∅ the partition into S and S is pre-determined and there is no need to solve the min-cut problem. This

happens for the pair of intervals [𝛼1, 𝛼p], [𝛼p+ 1, 𝛼n]. We next construct a graph G′ in which a minimum s, t-cut partition provides

an optimal solution to the range cut problem for a given feasible pair of intervals.

Consider the graph G= (V , E) with the edge weights wij associated with each edge [i, j] ∈ E. Let the graph G′ = ({s,

t}∪ VF, Est) be constructed as follows: The nodes corresponding to VS are “shrunk” into a source node s, and the nodes

corresponding to VS are “shrunk” into a sink node t. The graph G′ is illustrated in Figure 2. It is easy to see that shrinking a

node i with the source node s is equivalent, in terms of min-cut in the resulting graph, to adding an arc (s, i) of infinite capacity

from s to i. Similarly, shrinking a node j with the sink node t is equivalent to adding an arc (j, t) of infinite capacity from

j to t.
A minimum s, t-cut in the graph G′ provides an optimal partition of VF into S and S. Therefore, the min interval-range cut

problem can be solved by enumerating all possible feasible pairs of I1 and I2 and for each finding the min s, t-cut partition as

described above. Among all enumerated possibilities, the partition with the lowest objective value is the optimal solution to the

min interval-range cut problem.

Let T(m, n) be the complexity of a minimum s, t-cut procedure, on a graph with m arcs and n nodes. A straight-forward

implementation of the algorithm would require O(n2) calls to the minimum s, t-cut procedure, one for each pair of intervals’

selection, for a total complexity of O(n2 ⋅ T(m, n)).

It is shown next that this complexity can be reduced by a factor of O(n) using a parametric cut procedure: The parametric

flow, or parametric cut, problem is defined on a parametric graph where the source adjacent capacities and the sink adjacent

capacities are functions of a parameter; the source adjacent capacities are monotone nondecreasing in the parameter; and the

sink adjacent capacities are monotone nonincreasing in the parameter. All other arcs in the graph have fixed capacities. The

parametric flow problem, and the parametric cut problem which is the focus here, is to solve the maximum flow problem for

a list of q parameter values, or for all values of the parameter within an interval of length U. The parametric cut problem for

a list of q values was shown to be solved in the complexity of a single cut plus O(qn) for the Push-relabel and Hochbaum’s

PseudoFlow (HPF) algorithms (4, 11). Both these max-flow min-cut algorithms have complexity T(m, n) = O
(
𝑚𝑛 log

n2

m

)
.

(There are other implementations of these algorithms with different complexities as well, e.g., O(n3) (6, 15).) Therefore the

complexity of solving the parametric cut for a sequence of q parameter values is O(T[m, n]+ qn), where the term qn accounts

for the updates of the source and sink adjacent capacities.
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5.1 Comment
The complexity of solving the parametric cut (or flow) problem for all parameter values in an interval of length U was shown in

(4, 11) to be O(T(m, n)+ n log U/𝜀) for values determined with 𝜀 accuracy (within a Ł∞ distance of 𝜀 from the optimal solution).

Although the text in [4] claims the complexity of the algorithm to be O(T(m, n)), the actual complexity is as stated here.1

1The term n log U cannot be removed from the complexity as proved in (8, 10, 11). Therefore the complexity must depend on the term logU and hence cannot

be strongly polynomial.
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Consider the parameter list {1, 2, …, q}, and an s, t graph G with arc (or edge) capacities {w𝓁
𝑖𝑗
} that are functions of a

parameter 𝓁. An s, t graph G is a parametric graph if the arc capacities are functions of a parameter, and satisfy, for i, j≠ s, t:

w𝓁
𝑠𝑖 ≤ w𝓁+1

𝑠𝑖

w𝓁
𝑗𝑡 ≥ w𝓁+1

𝑗𝑡

w𝓁
𝑖𝑗 = w𝓁+1

𝑖𝑗 .

Let the parametric graph G with arc capacities {w𝓁
𝑖𝑗
} for a given value of 𝓁 be denoted by G𝓁 . The parametric graph

procedure takes as input, the graph G with arc weights wij and the parametric sets of source and sink adjacent arcs’ capacities:

parametric cut(G, {w𝓁
𝑠𝑖
,w𝓁

𝑗𝑡
}i,j∈V⧵{st},𝓁 = 1,… , q)) The procedure outputs S𝓁 , for 𝓁 = 1, …, q, so that (S𝓁 , S𝓁) is a minimum cut

in G𝓁 .2

Let the graph Gj be generated from graph Gj− 1 by shrinking one node v in Gj− 1 with the source. Since the shrinking of

node v with the source is equivalent to adding an arc (s, v) of infinite capacity, then this process increases the capacity of the arc

(s, v) adjacent to source from a finite value to infinity, while all other capacities remain constant. Hence the sequence of graphs

generated by shrinking with the source, one node at a time, form a parametric graph. Also, the sequence of graphs generated

by shrinking one node at a time with the sink node t, done by adding an infinite capacity arc between the node and t, form a

parametric graph with sink adjacent capacities monotone nondecreasing and source adjacent capacities that are constant, and

thus nonincreasing. The complexity of solving the min-cut for such a sequence of q graphs, G𝓁 , …, G𝓁 + q, with parametric cut

is therefore O(T(m, n)) since q< n, and the O(n2) complexity is dominated by T(m, n).

In the following theorem we show that Algorithm 1, solves the min range cut problem in O(nT(m, n)) steps.

Theorem 1. Algorithm 1 solves the min range cut problem in O(nT(m, n)) steps.

Proof. The correctness of the algorithm follows from its enumeration of all possible endpoints of intervals I1 and I2

and for each finding the min-cut partition of the elements in the overlap of the two intervals. ▪

The enumeration of all endpoints is done in two parts: lines 4-18 deal with pairs of feasible intervals I1 = [𝛼p, 𝛼n] and

I2 = [𝛼1, 𝛼q], and lines 20-34 deal with pairs of feasible intervals I1 = [𝛼1, 𝛼n] and I2 = [𝛼p, 𝛼q] where I1 ∩ I2 = I2.

The complexity of the Min Range Cut Algorithm is dominated by the two for loops, in steps 6 and 21, each of which consists

of calling at most n− 2 times for the parametric min-cut procedure. Each call for parametric cut has complexity of O(T(m, n)).

Therefore the complexity of the entire algorithm is O(nT(m, n)).

6 MIN NORMALIZED RANGE CUT PROBLEM

Unlike min range sum, min normalized range sum and min range cut, the min normalized range cut problem is not polynomial

time solvable. We demonstrate here the NP-hardness of the problem. In this section we slightly abuse terminology by referring

to optimization problems as NP-complete meaning that their decision version is NP-complete (the correct term for optimization

problems is NP-hard). All problems we address are clearly in NP and we will omit explicitly showing so.

Theorem 2. The min normalized range cut problem, min
∅⊂S⊂V

range(S)
∣S∣

+ range(S)
∣S∣

+ C(S, S), is NP-complete.

Proof. To prove NP-completeness, we use Karp reductions in two steps to show that min normalized range cut ∝P

min inverse set size cut ∝P balanced cut, where Q1 ∝PQ2 means that problem Q1 is at least as hard as problem Q2, and

equivalently, that problem Q2 is polynomial time reducible to problem Q1. We first introduce these problems and then

provide the NP-completeness proof. The balanced cut problem is a known NP-complete problem of finding the minimum

2-cut where the two sets in the bipartition are of equal size [5]. For a graph G= (V , E) on an even number of nodes n= |V
|, the balanced cut problem is formulated as:

minS⊂V ,∣S∣= n
2
C(S, S).

▪

2The code for HPF parametric cut is available at http://riot.ieor.berkeley.edu/Applications/Pseudoflow/parametric.html.

http://riot.ieor.berkeley.edu/Applications/Pseudoflow/parametric.html
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FIGURE 3 The original graph and the new graph in part 2’s reduction. Numbers inside the nodes of the new graph are the values of the respective elements

The min inverse set size cut problem is used here as an intermediary problem. This problem is defined as:

min
∅⊂S⊂V

1

∣ S ∣
+ 1

∣ S ∣
+ C(S, S).

Part 1: We first show that balanced cut is reducible to min inverse set size cut: Given an instance of balanced cut defined on

G= (V , E) with edge weights wij. Define a new, scaled graph, in which the edge weights are w′
𝑖𝑗
= w𝑖𝑗

M
, for some large number

M. A suitable choice of M is M =wmaxn4, where wmax =max[i, j]∈Ewij. We note that the minimum cut partition in a scaled graph

is the same as the minimum cut partition as in the original graph, and the capacity of the scaled cut is
1

M
times the capacity of

the cut in the original graph. The min inverse set size cut on this scaled graph is:

min
∅⊂S⊂V

1

∣ S ∣
+ 1

∣ S ∣
+ C(S, S)

M
.

Since there are at most O(n2) arcs in a cut, then for our choice of the value of M,
C(S,S)

M
is at most O

(
1

n2

)
. Consequently the

first two terms dominate the cut value term,
1

∣S∣
+ 1

∣S∣
≫

C(S,S)
M

by a factor of O(n). Thus the optimal solution will necessarily

minimize:

min
∅⊂S⊂V

1

∣ S ∣
+ 1

∣ S ∣
,

for which the minimum is attained for ∣ S ∣=∣ S ∣= n
2
. Among the solutions that minimize the first two terms, the min inverse

set size cut problem minimizes the term
C(S,S)

M
, resulting in a minimum balanced cut. Thus, min inverse set size cut problem is

NP-complete.

Part 2: We now demonstrate that min inverse set size cut is reducible to min normalized range cut: For a given problem

instance of the min inverse set size cut problem with n nodes and m edges, we construct a new graph with 2n nodes and m+ n
edges: Each original node v of V is connected to a new node v′ with an edge of capacity ∞. All original nodes are assigned a

value of 0 and all new nodes are assigned a value of 2. See Figure 3. The presence of edges of infinite capacity guarantees that

the range of both S and S for any finite cut partition is exactly two, as otherwise the cut would have to have an infinite value.

Also, for any finite cut partition in the original graph, the corresponding partition in the new graph has double the cardinality of

S and S and the same cut capacity. Thus, the solution to this new problem using min normalized range cut is exactly the solution

to the original instance of the min inverse set size cut problem.

7 RANGE SEGMENTATION IN K-PARTITIONS

In this section the bipartition results are extended to k-partitions. Specifically, we devise polynomial time algorithms for

min k-range sum, min max k range, min k-normalized range sum and show that min k-normalized range cut is NP-complete. For

any fixed value of k, the min k-range cut is shown here to be polynomial time solvable, as is the case for k= 2. But for arbitrary

value of k we prove here that the min k-range cut is NP-hard. This follows since the problem generalizes the min k-cut problem

which is NP-hard for arbitrary k [7].
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7.1 Min k-range sum problem
The min k-range sum problem is to find a partition (S1, …, Sk) of V that minimizes

∑k
i=1 range(Si). This problem can be solved

in linear time with Algorithm 2 as shown next.

Proposition 2. Algorithm 2 solves the min k-range sum problem in O(n) steps.

Proof. In an optimal solution v1 ∈ S1 and vn ∈ Sk, and the sets (S1, …, Sk) are nonoverlapping. These facts follow

from the same arguments used in Lemmas 1 and 2 and are omitted for brevity. It remains to determine the boundaries

between the nonoverlapping segments on the real line. This is equivalent to identifying the k− 1 largest gaps between

consecutive values of 𝛼. This can be done by finding first the (k− 1)st median in the set of n− 1 gaps, in linear time O(n),

using the algorithm of Blum et al. [2]. Once this median is found, the set of gaps is scanned once to mark all the gaps that

have value greater or equal to that of the (k− 1)st median. This produces the k− 1 largest gaps in linear time as shown in

Algorithm 2. These gaps separate the sets in the partition with the smallest sum of ranges. ▪

7.2 Min max k range
The min max k range problem for k> 2 is solved differently and with significantly higher complexity than the case of

k= 2 (in section 3). Recall that the min max k range problem is to find a partition (S1, …, Sk) of V , that minimizes

min
(S1,…,Sk)

(maxi∈{1,…,k}range(Si)).

As before, it is established, with the same arguments as in Lemma 1 and Lemma 2, that there is an optimal solution in which

v1 ∈ S1 and vn ∈ Sk, and that the intervals containing the sets (S1, …, Sk) are nonoverlapping. Specifically, each set Sj in an

optimal partition contains consecutive elements and is of the form {ij− 1 + 1, …, ij} with range 𝛼ij − 𝛼ij−1+1.

Proposition 3. Algorithm 3 solves the min max k range problem in O(n log3 n) steps.

Proof. The algorithm works by guessing one value for the max range at a time, and then conducting a feasibility check
to verify whether there is a feasible solution for that value. The smallest value of a guessed range for which there is a

feasible solution is the optimal range value. A natural way of implementing such an algorithm is by using binary search

on the
n
2

possible range values. Each possible range value is of the form 𝛼q − 𝛼p corresponding to a pair p, q such that

1≤ p< q≤ n. Let the set of all possible range values be 𝒟 = {𝛼q − 𝛼p|q > p, p = 1,… , n − 1, q = p + 1,… , n}. Note

that we disregard the trivial case where the optimal solution is 0. The trivial case happens when the number of distinct

scalar values is at most k. Since there are up to
n
2

possible range values, these can be sorted, in O(n2 log n) time (note that

log

(
n
2

)
is O(logn)). Let the sorted values in 𝒟 be d1 ≥ d2 ≥ · · · ≥ d(n

2

).

Consider the feasibility check for a given guessed value for the max range, z. To verify feasibility we first scan the

values of 𝛼1, 𝛼2, …, 𝛼n, for the largest index j1 so that 𝛼j1 − 𝛼1 ≤ z. If 𝛼2 − 𝛼1 > z then j1 = 1. The interval I1 = [1, 𝛼j1 ] is

then the first of up to k intervals representing the k-partition of the set of values 𝛼1, 𝛼2, …, 𝛼n. Next we scan the values of

𝛼j1+1, 𝛼j1+2,… , 𝛼n for the largest index j2 such that 𝛼j2 − 𝛼j1+1 ≤ z. Again, if 𝛼j1+1 − 𝛼j1 > z, then j2 = j1, corresponding to

an interval that contains only one element, which is of range 0. The interval I2 is then equal to [𝛼j1+1, 𝛼j2 ]. This is repeated

up to k times or until the last value 𝛼n is reached. If after k repetitions jk < n then the guessed value z is not feasible and



HOCHBAUM 13

therefore the optimal range value must be greater. Otherwise the guessed value is feasible and the optimal range value

can only be smaller than z. This feasibility check runs in O(n) steps as it scans the values of 𝛼 at most once each.

We comment that there is an alternative feasibility check on the guessed value z that runs in O(k log n) steps. For 𝛼ji ,

the start of the ith interval, we search, using binary search on the set of 𝛼 values, for the next value of 𝛼, 𝛼ji+1
, which is the

largest while the difference from the current value of 𝛼 is still less than z. Each such search requires O(logn) steps, and

since there are up to k such intervals the total complexity is O(k log n). This complexity is faster than O(n) if k = o
(

n
log n

)
,

but even then it does not improve the overall complexity since the other steps dominate it, as discussed next.

The optimal solution to the min max k range problem can then be found using binary search on the sorted sequence𝒟 .

This requires O(logn) calls for feasibility check for a total complexity of O(n log n) which is dominated by the complexity

of the sorting of 𝒟 , O(n2 log n). Next we show that the need to sort the distances in 𝒟 can be avoided, resulting in

substantial speed-up from O(n2 log n) down to O(nlog3n).

Megiddo et al. [16] devised an efficient algorithm, called here the M-algorithm, for finding the ith longest path among

the set of all simple paths in a tree with edge weights. For a tree on n nodes the complexity of the M-algorithm is O(nlog2n).

Note that the number of different simple paths in a tree is O(n2), since each simple path is uniquely characterized by its

pair of endpoints. Consider a path graph on nodes {1, 2, …, n}, where all edges are of the form [i, i+ 1] with weights

𝛼i+ 1 − 𝛼i for i= 1, …, n− 1. A path graph is obviously a tree and thus the M-algorithm is applicable to this path graph.

The distance between node p and node q, for p< q is then 𝛼q − 𝛼p. Now, instead of sorting the distances in 𝒟 , we use the

M-algorithm to identify the ith longest of the potentially feasible ranges which is the value z to be checked for feasibility.

Since each call and feasibility check reduces the number of potentially feasible ranges by a factor of 2, the total number

of calls is log

(
n
2

)
, which is O(logn).

Initially the interval of integer indices

[
1,

(
n
2

)]
contains the list of the index positions of all the potentially feasible

ranges. At each iteration we find the median value in this interval of indices, without having the sorting available, by

calling the M-algorithm. If this median range value is feasible, then we conclude that the min max feasible range can

be only smaller and thus resides in the list of indices smaller than or equal to the median. Otherwise it resides in the

list of larger indices. Initially the endpoints of the interval of indices are amin = 1 and amax =
(

n
2

)
. At each iteration the

M-algorithm finds the median range value z in the interval, which is the
⌊

1

2
(amin + amax)

⌋
th longest in the original list.

If z is feasible then amax is updated to be equal to this median index, otherwise amin is updated to be equal to this median

index plus 1. The length of the interval is hence reduced by a factor of 2 at each iteration, thus requiring at most log

(
n
2

)
iterations of the procedure.

At each of the O(logn) calls for the guessed value of the range there is one call for finding the
⌊

1

2
(amin + amax)

⌋
th

longest value z and one call for feasibility check of z. The first requires O(nlog2n) steps and the second requires O(n)

steps. The total complexity is then O(logn ⋅ (nlog2n+ n)). Thus, the optimal solution to the min max k range problem is

computed in time O(nlog3n). ▪

The pseudocode of the algorithm solving min max k range is given as Algorithm 3.

7.3 Min k-range cut
Recall that the min k-range cut problem is min(S1,…,Sk)

∑k
i=1 range(Si) +

∑k−1

i=1

∑k
j=i+1 C(Si, Sj). For the range-cut (2-range cut)

problem we reduced the problem to calls, for each configuration of interval partitioning, to a min cut procedure (section 5). The

idea here is analogous, exploiting the use of the polynomial time minimum k-cut algorithm for k fixed of [7]. First, we note that

for arbitrary k the NP-hardness of the minimum k-cut problem [7] implies that min k-range cut is NP-hard. This is easy to show

by selecting the range of the values to be very small, by a factor of n at least, than the smallest weights of the graph. And then

the value of any solution is dominated by the value of the k-cut partition.

The k-cut problem was shown to be solved in polynomial time for fixed k with the algorithm of Goldschmidt and Hochbaum

[7] (GH-algorithm). The GH-algorithm involves O(nO(k2)) calls to a min s, t-cut procedure. For k not fixed the problem was

shown to be NP-hard. The way the algorithm works is by guessing a set of “seeds” that must belong to one set in the partition,

and a set of “seeds” that belong to the other k− 1 sets. The algorithm calls for a respective min s, t-cut for the seeds in the

set shrunk into the source set s, and the seeds for the other sets shrunk into the sink node t. The resulting source set is then

considered to be one set in the k-partition and the process then continues, recursively, on the subgraph induced by the sink set,
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k− 1 additional times, resulting in a k-partition. It was shown in [7] that it is sufficient to select seed sets that contain at most

O(k) seeds, and thus enumerating all of them takes time that is polynomial for fixed k.

Our algorithm for min k-range cut is a generalization of the min range cut algorithm, for k= 2, and similarly works in two

steps. In the first step select all possible feasible collections of k intervals, each corresponding to one set Si, determined by

the endpoints [min(Si), max(Si)] (possibly min(Si)=max(Si)). Since the sets Si form a partition, the endpoints of the respective

intervals are distinct. Hence there are up to 2 k− 2 distinct endpoints, and respectively up to O(kn2k− 2) interval configurations. A

k-intervals configuration is feasible, if all values of 𝛼 are contained in the union of the intervals. For each interval configuration

that is feasible we let the seeds for the ith set in the partition Si include min(Si) and max(Si) and all the nodes that correspond

to values in the interval (min(Si), max(Si)) that are not in any of the other k− 1 intervals. The resulting set of seeds is then

augmented, if necessary, by the GH-algorithm, which is otherwise employed without change.

The total complexity involves then O(kn2k− 2) calls to the k-cut algorithm, each of complexity O(nO(k2)T(m, n)). Since

kn2k− 2 ⋅ nO(k2) is O(nO(k2)) the total complexity of solving the min k-range cut problem is O(nO(k2)T(m, n)).

7.4 Min k-normalized range sum
The min k-normalized range sum problem is to find a k-partition, (S1, …, Sk), to achieve the following objective:

Q(n, k) = min
(S1,…,Sk)

k∑
i=1

range(Si)
f (|Si|)

We next present a polynomial time dynamic programming algorithm for the problem:

Proposition 4. The min k-normalized range sum problem is solvable in polynomial time O(n2k).

Proof. As before, it can be proved that there exists an optimal solution in which v1 ∈ S1 and vn ∈ Sk, and that the sets

(S1, …, Sk) are nonoverlapping. The proof follows the same argument as in Lemmas 3 and 4 and is omitted.

The value of the objective function Q(n, k) is the minimum cost required to partition n elements into k sets. For the

ordered input elements according to {𝛼1 < · · ·<𝛼n}, let Q(p, j), be the minimum cost for a partition of the first p elements



HOCHBAUM 15

of the input array into j sets, for p ∈{1, …, n} and j ∈{1, …, k}. We construct a dynamic programming recursion with

the boundary conditions: Q(j, j)= 0 ∀j, Q(p, 1) = 𝛼p−𝛼1

f (p)
∀p, and Q(i, j)= ∞ ∀ i< j, with the latter being infeasible and

therefore set to ∞. The following recursion is used to calculate Q(p, j) for p, j> 1, once the values of Q(p′, j′) have been

evaluated for all p′ < p and j′ < j:

Q(p, j) = min𝓁∈{j−1,..,p−1}

(
Q(𝓁, j − 1) +

𝛼p − 𝛼𝓁+1

f (p − 𝓁)

)
The rationale for the recursion is that optimal partitioning of p elements into j sets consists, for some value 𝓁, of an

optimal partitioning of elements 1, …, 𝓁 into j− 1 sets and allocating elements 𝓁 + 1, …, p into the jth set. Since each

recursion evaluation is accomplished in at most O(p) steps, and there are O(kn) function evaluations it follows that the

optimal solution Q(n, k) is determined by this dynamic programming procedure with complexity O(n2k). ▪

7.5 Min k-normalized range cut
In section 6, we proved this problem to be NP-complete in a bipartition setting. The following theorem follows by simply

noticing that the bipartition problem is a special case of min k-normalized range cut problem, with k= 2.

Theorem 3. The min k-normalized range cut problem is NP-complete.

8 AN EXPERIMENT

In testing the applicability of range models we used one of the range models presented here on the source image in Figure 4A,

from the Berkeley Segmentation Dataset and Benchmark (http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/

segbench/). Our goal is to segment the white snow areas. This task is challenging for known image segmentation methods as

they tend to select a single contiguous area. In particular, all cut related methods would not fully segment the snow areas as

these areas are not contiguous and there are lengthy boundaries between them and the nonsnow areas. Algorithms that involve

any form of cut, or attempt to achieve smooth and short boundaries between the segmented section and it complement, will not

be able to attain a good segmentation of the snowy areas. This is because these boundaries contribute to increase the value of

the cut separating the snow areas from the nonsnow areas. Therefore any min-cut based algorithm will tend to segment just one

area of the snow and leave the others in the background. Applying the min range sum objective, however, results in a close to

perfect segmentation that segments the snow together with very light surfaces and thus captures all the snow areas, as seen in

Figure 4B.

We comment about the characteristics of each of the five range algorithms as per the prospective success in segmenting the

image in Figure 4A. The segmentation sought is a 2-partition into the foreground set S and the background set S.

1. min range sum: With the min range sum objective the entire area of the snow is captured since the range of the foreground

set and its complement are the dominant factors in determining the optimal solution. This image has a distinct separation

between light color areas and dark color areas. Therefore the largest gap is separating these two types of areas and delivers

the desired output segmentation.

FIGURE 4 (a) Source image. (b) Range clustered image [Colour figure can be viewed at wileyonlinelibrary.com]

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench
http://wileyonlinelibrary.com
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2. min max range: Because the focus here is just on the small and limited range of the foreground snow, the goal of min

max range, which drives towards balancing the range values between S and S, is not relevant.

3. min normalized range sum: The objective function here has the ranges of sets S and S divided by the respective number

of pixels it contains. This drives the more range concentrated set (the snow) to be smaller, and the larger range set (the

background) to be significantly larger. Since here we do not want to assume any specific proportion on the partition into S
and S, this objective is unsuitable. Still, since the specific partition in Figure 4B is fairly balanced in terms of the number

of pixels that fall in S and S it is likely that for this image min normalized range sum will produce the same or similar

output.

4. min range cut: Here, the addition of the cut value to the sum of ranges mitigates the effect of the ranges’ sum in favor

of driving towards a small cut value. Since most of the separation (the edges) between the snow and the background is

quite distinct in this particular image, the cost of the edges in the cut is fairly small. Even so, the minimum cut part of the

objective favors more contiguous areas since their boundary is shorter than the sum of boundaries of multiple separate

areas. It is possible for an optimal solution to have S assuming the full range in which case the goal of having S with very

small range and very small cut, can be achieved when S is a singleton, having very few edges of the cut adjacent to it (at

most 4 in a 4-neighbor set up). This would be an undesirable segmentation.

5. min normalized range cut: Here the output will be driven towards the balancing of the sizes of S and S, as well as achieving

a single contiguous area. Neither one of these characteristics is desired in the ideal segmentation. Moreover, this model

is NP-hard and therefore not a practical candidate.

As a result of this evaluation we conclude that the min range sum is the most suitable range objective to be used.

9 CONCLUSIONS

We introduce here a novel criterion in clustering that seeks clusters with limited range of values that characterize each cluster’s

elements. We present a family of range-based clustering objective functions based on commonly considered goals in clus-

tering and demonstrate that, in general, the range-based optimization problems are easier to solve (complexity-wise) than the

corresponding total similarity problems. The proposed objectives could therefore be a viable alternative to existing clustering

criteria, that are NP-hard, offering the advantage of efficient algorithms. Moreover, the range-based problems are meaningful

in clustering applications, such as image segmentation, where the diameter, or range of values associated with objects in each

cluster, should be small.
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