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A general form of minimizing the Rayleigh ratio on discrete variables is shown here, for the first time, to be polynomial time
solvable. This is significant because major problems in clustering, partitioning, and imaging can be presented as the Rayleigh
ratio minimization on discrete variables and an orthogonality constraint. These challenging problems are modeled as the
normalized cut problem, the graph expander ratio problem, the Cheeger constant problem, or the conductance problem,
all of which are NP-hard. These problems have traditionally been solved, heuristically, using the “spectral technique.”
A unified framework is provided here whereby all these problems are formulated as a constrained minimization form of
a quadratic ratio, referred to here as the Rayleigh ratio. The quadratic ratio is to be minimized on discrete variables and
a single sum constraint that we call the balance or orthogonality constraint. When the discreteness constraints on the
variables are disregarded, the resulting continuous relaxation is solved by the spectral method. It is shown here that the
Rayleigh ratio minimization subject to the discreteness constraints requiring each variable to assume one of two values in
8−b119 is solvable in strongly polynomial time, equivalent to a single minimum s1 t cut algorithm on a graph of same size
as the input graph, for any nonnegative value of b. This discrete form for the Rayleigh ratio problem was often assumed
to be NP-hard. Not only is it shown here that the discrete Rayleigh ratio problem is polynomial time solvable, but also
the algorithm is more efficient than the spectral algorithm. Furthermore, an experimental study demonstrates that the new
algorithm provides in practice an improvement, often dramatic, on the quality of the results of the spectral method, both
in terms of approximating the true optimum of the Rayleigh ratio problem on both the discrete variables and the balance
constraint, and in terms of the subjective partition quality.

A further contribution here is the introduction of a problem, the quantity-normalized cut, generalizing all the Rayleigh
ratio problems. The discrete version of that problem is also solved with the efficient algorithm presented. This problem
is shown, in a companion paper, to enable the modeling of features essential to clustering that are valuable in practical
applications.

Subject classifications : Cheeger constant; parametric cut algorithm; Fiedler eigenvector; quantity-normalized cut.
Area of review : Optimization.
History : Received July 2010; revision received May 2012; accepted September 2012. Published online in Articles in

Advance February 8, 2013.

1. Introduction
A general form of minimizing the Rayleigh ratio on dis-
crete variables is shown here, for the first time, to be poly-
nomial time solvable. This is significant because major
problems in clustering, partitioning, and imaging can be
presented as the Rayleigh ratio minimization on discrete
variables and an orthogonality constraint. The clustering
problems addressed here include the well-known partition-
ing problems of normalized cut (Shi and Malik 2000), the
graph expander ratio (Hoory et al. 2006), the Cheeger con-
stant (Cheeger 1970), the uniform sparsest cut (Leighton
and Rao 1999), and the conductance problem (Jerrum and
Sinclair 1997). All these problems are NP-hard and there
is no known approximation algorithm for any of them that

guarantees to generate a solution that is at most within a
bounded factor of the optimum.

The dominant, and most commonly used, solution meth-
od for these problems is the “spectral” method based on
finding the eigenvector(s) of a related matrix. We devise
here a new combinatorial algorithm alternative to the spec-
tral method that delivers solutions to the problems that are
often of better quality and with more efficient run times.

The theoretical underpinnings for the spectral method
were motivated by Perron-Frobenius theorem (Perron 1907,
Frobenius 1912). The spectral method has been used in
ranking forms of clustering since the 1950s (see, e.g.,
Keener 1993). The use of the spectral technique for graph
partitioning is based on links between the values of the
eigenvalues of the Laplacian matrix of a graph and assorted
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graph properties. Such properties are investigated within
the framework of “spectral graph theory.” A good exposi-
tion on this subject is present in a classic book by Chung
(1997). Although eigenvectors and their respective eigen-
values can be found in polynomial time, for an undirected
graph on n nodes and m edges the Laplacian matrix is of
size n× n. For images of size 11000 × 11000, for instance,
the respective Laplacian matrix contains 1012 elements, pre-
senting a formidable computational challenge. This chal-
lenge is magnified by the fact that eigenvector algorithms
are “algebraic” and as such are prone to round-off errors
and run times affected by the size of the numbers in the
matrix. Because in Laplacian matrices only entries corre-
sponding to the m edges of the graph are nonzero, these
are typically sparse. A great deal of recent research is
focused on algorithms that can find approximate eigenvec-
tors for Laplacian matrices, that are symmetric and diag-
onally dominant, and with high probability, in exchange
for improved run times. The recent significant works in
this area vary from the Spielman and Teng (2004) proba-
bilistic algorithm that solves a system of linear equations
for symmetric and diagonally dominant matrices with rel-
ative error � with complexity O4m log32 n log41/�55, to a
recent improvement by Koutis et al. (2011) with complex-
ity O4m logn4log logn52 log41/�55. These recent research
efforts attempt to address the computational shortcomings
of the spectral method.

Yet, even when the eigenvector is found, there is no
obvious way of translating it to a discrete bipartition. The
most common approach for doing that is to test all possible
threshold values, and, for each, partition the n entries of
the vector to the set of those of value exceeding the thresh-
old and those below the threshold. The threshold that gives
the best (lowest) value of the objective function is then
selected. This technique is called sweep and its use is jus-
tified by theoretical results in the form of approximability
bounds, given in (4).

In contrast, the technique proposed here solves opti-
mally the discrete relaxation of the problem, with a
strongly polynomial combinatorial algorithm with com-
plexity O4mn log 4n2/m55 for a graph on n nodes and
m edges. The algorithm is flow based and combinato-
rial, using HPF (Hochbaum’s Pseudo Flow) as a subrou-
tine, which is efficient enough to be used to solve these
problems on millions of elements and more than 300 mil-
lion edges within less than 10 minutes-instances that are
way beyond the limits of the spectral technique. More-
over, it is demonstrated, in an extensive experimental study
(Hochbaum et al. 2012) that the results of the combinatorial
algorithm here improve, often dramatically, on the quality
of the results of the spectral method, both in terms of pro-
viding better value to the NP-hard objective, and in terms
of better visual quality segmentation.

The problems are presented here within a unifying
framework whereby a form of the problems is formulated
as a Rayleigh ratio, generalizing the standard Rayleigh

ratio. The spectral technique can be viewed as solving a
continuous relaxation of the Rayleigh ratio problem that
disregards the discrete nature of the variables and their val-
ues. Our main result is to show that the discrete Rayleigh
ratio problem (that excludes the balance constraint) is solv-
able in strongly polynomial time, and often provides better
quality solutions than the spectral approach. Further results
include the introduction of the quantity-normalized cut that
generalizes these problems and experimental evidence to
the superiority of the combinatorial algorithm in terms of
run time, substantially better approximations, and better
subjective quality of the delivered clustering.

1.1. Notation

Vectors are denoted in boldface. Let G = 4V 1E5 be an
undirected graph with edge weights wij for 6i1 j7 ∈ E. For
A1B ⊆ V , let C4A1B5 =

∑

6i1 j7∈E1 i∈A1 j∈B wij . A bipartition
of the set of nodes in a graph 8S1 S̄9 is identified with a cut,
4S1 S̄5= 86i1 j7 � i ∈ S1 j ∈ S̄9, where S̄ = V \S. The capacity
of a cut is C4S1 S̄5. For inputs with two sets of weights
associated with each edge, w

415
ij 1w

425
ij we let C14A1B5 =

∑

i∈A1 j∈B w
415
ij and C24A1B5=

∑

i∈A1 j∈B w
415
ij .

All the Rayleigh problems, except conductance, are
defined for undirected graphs. For a directed graph, G =

4V 1A5, an arc in A is denoted by an ordered pair 4i1 j5.
This is to differentiate the notation from that of the undi-
rected edge that is an unordered pair, 6i1 j7.

Let di =
∑

6i1 j7∈E wij be the weighted degree of node i.
For a subset of nodes V ′ ⊆ V we let d4V ′5 =

∑

i∈V ′ di =

C4V ′1 V 5. For arbitrary scalars qi for all i ∈ V we define
q4V ′5=

∑

i∈V ′ qi and a diagonal matrix Q with Qii = qi.
We use the notation of n= �V � for the number of nodes,

and m= �E� for the number of edges in the graph G. Let 1
be the vector of all ones.

Let D be a diagonal matrix n × n, with Dii = di =
∑

6i1 j7∈E wij . Let W be the weighted node–node adjacency
matrix of the graph, where Wij = Wji = wij . The matrix
L = D − W is called the Laplacian of the graph and
is known to be positive semi-definite (Hall 1970). For a
directed graph G= 4V 1A5 with arc weights wij , the matrix
W is not symmetric, and di =

∑

4i1 j5∈Awij . Otherwise, all
derivations here apply to the nonsymmetric, or directed
graph, cases as well.

Let n = �V � and m = �E�. Denote by T 4n1m5 the com-
plexity of the minimum s1 t-cut problem. This complexity
is, for example, O4mn log 4n2/m55 using the push-relabel
algorithm (Goldberg and Tarjan 1988), or using HPF algo-
rithm; see Hochbaum (2008) and Hochbaum and Orlin
(2013).

1.2. The Problems and Applications

We sketch here the major Rayleigh ratio problems and their
applications.

The expansion ratio of a graph (also known as the isoperi-
metric value) is the value of minS⊂V 1 �S�¶�V �/24C4S1 S̄5/�S�5.
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Finding the isoperimetric value of a graph is an NP-hard
problem. Computing this value is of importance because
graphs with large isoperimetric value are desirable in the
construction of good error-correcting codes. In such graphs
messages can be decoded correctly, even if multiple bits
are corrupted in the transmission (Sipser and Spielman
1996; Spielman 1996, 1999; Hoory et al. 2006). Codes
corresponding to graphs with large isoperimetric values fea-
ture large Hemming distances between code words. Con-
sequently, a message arriving with few erroneous bits can
likely be decoded correctly by mapping it to the nearest code
word. Graphs with small isoperimetric values are called
concentrators.

The Cheeger constant is the quantity

min
S⊂V 1 �S�¶�V �/2

C4S1 S̄5

d4S5
0

An associated quantity is the normalized cut value

min
S⊂V

{

C4S1 S̄5

d4S5
+

C4S1 S̄5

d4S̄5

}

discussed in detail in in §2.
The Cheeger constant of graphs has been associated with

the static/dynamic load-balancing problem in parallel com-
puting (Van Driessche and Roose 1995). The set up for this
application is grid computing, where each element is a grid
point and the goal is to assign grid points to each processor,
so as to minimize the amount of required communication
between the processors, while increasing the intergrid sim-
ilarity within each subgrid. To partition the grid points into
more than two processors, one iteratively repeats the parti-
tion generated by the optimal solution to Cheeger constant.

The Cheeger constant partition and the related normal-
ized cut’s partition produce a cluster that is dissimilar
from its complement whereas each subset of the bipartition
retains as much similarity as possible between the elements
of the subset (see Lemma 2). These models have been used
extensively for image segmentation. Normalized cut has
also been used in numerous other application areas includ-
ing gene clustering, e.g., Narayanan et al. (2010). In other
contexts, Hu et al. (2005) used normalized cut as part of a
scalable algorithm for mining dense and large subgraphs,
and Filippone et al. (2008) provide an excellent survey on
the use of kernel, spectral, and normalized cut methods for
clustering.

A directed version of Cheeger constant is of importance
for assessing the mixing rate of Markov chains–that is,
the rate of convergence to the stationary probability of the
states. In that context, we refer to the analog of Cheeger
constant as the conductance ratio. Directed graphs with
nodes representing the states, and arcs with transition prob-
ability associated with them, that have good conductance
ratio have rapidly mixing Markov chains. The conduc-
tance ratio of a directed graph G = 4V 1A5 is defined as

minS⊂V 1�4S5¶1/24C4S1 S̄5/�4S55. Here the weights assigned
to the arcs, wij , are the transition probabilities from i
to j , and the node weights �i are set equal to

∑

4i1 j5∈Awij ,
�4S5=

∑

i∈S �i, and �4V 5= 1. Therefore this is a directed
version of Cheeger constant with the scaling �i = di/d4V 5.

The mixing rate was shown to be related to the con-
ductance ratio of the graph in Jerrum and Sinclair (1997).
The conductance ratio is also useful in an algorithmic
design toolbox that generates fully polynomial time ran-
domized approximation scheme (Jerrum and Sinclair 1997).
That is, in combination with commonly used statistical
techniques (Jerrum and Sinclair 1997) or reduction tech-
niques from sampling to set counting (Sinclair and Jerrum
1989), one can find, for graphs with good conductance
ratio, efficient probabilistic algorithms addressing problems
that include approximate counting, combinatorial optimiza-
tion by stochastic heuristic search, and a variety of prob-
lems in theoretical computer science and statistical physics
(Sinclair 1992, Jerrum and Sinclair 1997). This algorithmic
framework is called Markov chain Monte Carlo method.

Because in most clustering applications of interest the
weights on the edges are (symmetric) similarity weights,
we focus the presentation here on undirected graphs. Nev-
ertheless all the results presented carry to directed graphs
as well, and the only change for the spectral method is that
the Laplacian matrix becomes asymmetric.

One of the contributions here is a generalization of
Cheeger constant, which we call half-quantity-normalized-
cut problem, or half-q-NC:

(half-q-NC) �G = min
S⊂V 1q4S5¶q4V 5/2

C4S1 S̄5

q4S5
0 (1)

The half-quantity-normalized-cut problem has not been
discussed previously in the literature. Yet, this problem,
and its discrete relaxation, shown here to be polynomial
time solvable, are both good models for clustering. We
demonstrate its use in image segmentation, where each
node (or pixel in the image) has a qi value that is higher
the likelier is the pixel to belong to the segmented feature.
In the experiments presented in §6 the pixel weights are
the respective entropy values of the nodes in the associated
graph. This ability to assign node weights different from
the sum of weights of adjacent edges has applications in,
e.g., medical imaging where the goal is to delineate cer-
tain tissue area such as knee cartilage. The value of qi in
that case increases with growing similarity of the texture
of the pixel, for instance, to that of the segmented feature.
This is unlike existing models such as the normalized cut
or Cheeger where the node weights depend only on the
similarity to adjacent pixels or nodes.

We present here a unifying framework for all these prob-
lems, where the optimal solution is shown to be the solution
to a quadratic discrete optimization problem, which we call
the Rayleigh problem because it is a variant of the well-
known Rayleigh ratio (or quotient):

(Rayleigh problem) min
yT Q1=01 yi∈8−b119

yTLy
yTQy

0 (2)
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For a problem on n variables the vector y is n-dimensional,
the matrix Q is diagonal and nonnegative, and L=D−W
is the Laplacian of the graph. For different settings of Q
we get the formulations of these problems, as shown in §2.
We refer to the constraint yTQ1 = 0 as the orthogonality
or balance constraint.

The Rayleigh problem (2) is NP-hard, even for Q = I
(where it is a “double form” of the expander ratio and
NP-hard, discussed in detail in §2). A common approach
for generating solutions and bounds for NP-hard problems
is to relax the constraints that make the respective prob-
lem hard. The Rayleigh problem is a useful formulation
because it generalizes a large number of bipartioning mod-
els and because the spectral method can be viewed as
relaxing the discretizing constraints yi ∈ 8−b119 in this for-
mulation. We refer to this relaxation here as the continuous
Rayleigh problem. Notice that this relaxation relaxes more
than the discreteness requirement that omits the discrete
choice between −b and one and replaces it by the con-
straints yi ∈ 6−b117. The continuous Rayleigh relaxation
further omits the constraints yi ∈ 6−b117.

The spectral method is the dominant technique used to
date for solving the problems of normalized cut, expander
ratio and Cheeger constant (Shi and Malik 2000, Sharon
et al. 2006, Tolliver and Miller 2006). One justification
for the use of the spectral method is the approximation
bound known for the optimal objective value of Cheeger
constant, hG, based on the second smallest eigenvalue,
the Fiedler value �1 (Fiedler 1973, 1975; Cheeger 1970;
Chung 1997):

�1

2
¶ hG ¶

√

2�10 (3)

The constructive proof of the second inequality of (3)
utilizes the bipartition generated by applying the sweep
technique. Denoting Cheeger constant’s objective value for
this bipartition by hs-spec, (“s” stands for sweep and “spec”
stands for the spectral method) the following inequalities
are known to be satisfied (Chung 1997):

hG ¶ hs-spec ¶ 2
√

hG0 (4)

Although the theoretical bounds for the spectral solu-
tion appear promising, the spectral technique’s solutions
are often poor approximations compared to the combinato-
rial technique. The spectral method is also computationally
demanding, noncombinatorial, and imposes severe mem-
ory requirement because of the challenge of dealing with
the very large (though sparse) Laplacian. For an image
of size n × n, the Laplacian matrix has n4 entries, which
makes applying the spectral method to images of sizes
exceeding 100 × 100 very challenging. The running time
results reported in Hochbaum et al. (2012) indeed confirm
that in practice the running times of the spectral method
are substantially higher than those of the combinatorial
method, and furthermore, this gap grows with the size of

the input, indicating that the combinatorial method scales
well, whereas the spectral method scales poorly.

The combinatorial algorithm establishes, for the first
time, that the binary optimization problem, the discrete
Rayleigh ratio (DRR),

(b-DRR) �4b5= min
yi∈8−b119

yTLy
yTQy

(5)

is polynomial time solvable and for any value of b ¾ 0.
We refer henceforth to this algorithm as the DRR algorithm

1.3. Previous Work on the Discrete
Rayleigh Ratio Problems

DRR problems have been investigated previously, often
assuming implicitly that they are NP-hard, or even stating
so explicitly.

Sharon et al. (2006) defined the following problem, call-
ing it “normalized cut,” and stating it is NP-hard:

NC′

G = min
S⊂V

C4S1 S̄5

C4S1S5
0 (6)

The solution to this problem, referred to here as NC′, is
a subset S that is as dissimilar as possible to S̄ and that
also has similarity within, measured by C4S1S5, that is
as large as possible. This problem was shown to be poly-
nomial time solvable in Hochbaum (2010). However, that
algorithm devised in Hochbaum (2010) is different from the
DRR algorithm here for the discrete Rayleigh ratio problem
as explained next.

In matrix form the problem that corresponds to NC′ can
be written as

NC′

G = min
xi∈80119

∑

wij4xi − xj5
2

∑

wijxi · xj
= min

xi∈80119

xTLx
xTWx

0 (7)

(See proof of Lemma 3 to verify this.)
The algorithm of Sharon et al. (2006) relaxed the dis-

crete constraints xi ∈ 80119 and the resulting continuous
problem was solved heuristically with an approximate pro-
cedure to find the Fiedler eigenvector. However, as noted in
Hochbaum (2010), this problem is polynomial time solv-
able. The algorithm used in Hochbaum (2010) is different
from the DRR algorithm and it does not apply directly to
Rayleigh ratio problems.

To see why, notice that problem (7) is not a Rayleigh
ratio problem because the matrix W in the denominator is
not a diagonal matrix. The algorithm in Hochbaum (2010)
formulated this problem directly, as an integer program on
monotone inequalities. This formulation of this problem
includes a variable for each node and a variable for each
edge (or arc). The problem is then shown to be equiv-
alent to a parametric cut problem on a graph on n + m
nodes and n+m edges. Consequently the running time is
T 4m1m5. The DRR algorithm here based on the Rayleigh
ratio formulation is more efficient, of complexity T 4n1m5.
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To see that problem (7) is in fact equivalent to the discrete
Rayleigh problem, observe that

xTLx
xTWx

=
xTLx

xTDx− xTLx
= 1

/(

xTDx
xTLx

− 1
)

0

Therefore, minimizing this ratio for xi ∈ 80119 is equivalent
to maximizing 4xTDx5/4xTLx5 on binary variables, which
in turn is equivalent to minimizing the reciprocal quantity
4xTLx5/4xTDx5, which is the discrete Rayleigh problem.
Therefore the problem is solved more efficiently than in
Hochbaum (2010) with the DRR algorithm given here.

A variant of the NP-hard problem of the expander ratio,
min�S�¶n/24C4S1 S̄5/�S�5, was addressed under the name
ratio regions by Cox et al. (1996). The ratio region prob-
lem is motivated by seeking a segment, or region, where
the boundary is of low cost and the segment itself has high
node weight:

min
S⊂V

C4S1 S̄5

�S�
0 (8)

Note that this formulation does not contain the constraint
�S� ¶ n/2 that is present in the expander ratio problem.
Hence, the segments’ sizes are not necessarily balanced.
The ratio regions problem studied by Cox et al. (1996)
is restricted to planar graphs and thus, in the context of
images, to planar grid images with four neighbors only.
In case of planar graphs, the length of the path along the
boundary of the region is the same as the capacity of a cut
in the dual graph. This observation is key to the algorithm
in Cox et al. (1996). For graph nodes of weight qi the
problem is generalized to, minS⊂V 4C4S1 S̄5/

∑

i∈S qi5. Cox
et al. (1996) showed how to solve the weighted problem
on planar graphs where all node weights are positive.

This weighted problem, for any general graph and for
arbitrary weights, was shown in Hochbaum (2010) to
be polynomial time solvable. That algorithm is a spe-
cial case of the DRR algorithm here solving the 0-DRR
minxi∈801194x

TLx5/4xTQx5.
Ding et al. (2001) suggested an approach of utilizing the

Fiedler eigenvector to better balance the partition. The idea
is to check all thresholds with respect to a different objec-
tive function than normalized cut and find the best solution
for this alternative objective. Such an approach certainly
provides a more balanced partition than the sweep tech-
nique, but a worse solution (larger value) to the normal-
ized cut problem than the solution provided by the sweep
method. In their presentation they use the discrete Rayleigh
ratio in which the discreteness constraints are relaxed. That
formulation, as shown here, could be solved in polynomial
time optimally.

1.4. Summary of Main Contributions

Our main contributions here include the following:
1. Devising a unifying framework that presents all the

problems discussed here as a Rayleigh ratio problem. This

has not been shown explicitly up until now for all these
problems and the proof offered here is the simplest com-
pared to proofs that exist for special cases, e.g., Chung
(1997) and Shi and Malik (2000).

2. Providing the first known polynomial time algorithm
for DRR—the Rayleigh ratio minimization subject to the
discrete two-valued (binary) constraints.

3. Introducing the half-quantity-normalized-cut problem
as a generalization of the expander, Cheeger constant, and
conductance problems.

4. Showing that the quantity-normalized cut’ problem is
solved in polynomial time with arbitrary node weights.

5. Identifying the orthogonality constraint as the “cause”
of the NP-hardness of the problem and showing its equiv-
alent to the “balance” constraint q4S5¶ q4V 5/2.

6. Providing a simple and easy proof that for �4b5 (the
optimal solution value to b-DRR for a fixed value b), hG

and the half-q-normalized cut �G both satisfy hG1�G ¾
�4b5/2 and hG1�G ¾ �1/2.

7. Demonstrating that the proposed polynomial time
algorithm is also efficient in practice and should thus be
the methodology of choice for deriving good solutions for
these problems. An expanded experimental study is pro-
vided in Hochbaum et al. (2012).

8. Introducing the directed version of normalized cut
and quantity normalized cut and proving that the discrete
Rayleigh ratio of these problems is solved in polyno-
mial time.

1.5. Overview and Organization of Paper

In §2 we explore the relationships between the different
bipartition problems and introduce the double form of the
problems, which are called here normalized cut problems,
as they are variant of the problem known in the litera-
ture as normalized cut (Shi and Malik 2000). The algebraic
and graph representations of these problems are linked by
showing in §3 that all these normalized cut problems can
be formulated as Rayleigh problems. In §4 we describe the
spectral method that solves the continuous relaxation of the
Rayleigh problem. Section 5 presents the new combinato-
rial algorithms for solving the discrete Rayleigh problem.
Section 6 contains a summary of an experimental study
on the performance of both the spectral approach and the
combinatorial approaches for all the problems studied for
image-based data sets. Section 7 contains a brief summary
of the results presented.

2. The Problems and Their Relationships
In the problems addressed the objective is to identify a
nonempty subset S ⊂ V so that a certain criterion will be
optimized for the set and its complement S̄. A feasible solu-
tion to any of these problems forms a bipartition 4S1 S̄5.
In general, the edge weights given are similarity weights.
That is, the magnitude of the similarity weight between
two nodes is growing as the two nodes are more “similar.”
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A desirable bipartition therefore corresponds to minimizing
the cut C4S1 S̄5 so the two sets are as dissimilar from each
other as possible. Indeed, for all problems here, part of the
objective includes a term for the cut C4S1 S̄5. The optimiza-
tion criteria are in the form of ratio for all the problems
discussed. These ratio problems are defined as follows:

• Expander ratio of a graph. This is also known as the
isoperimetric problem. It appears as either one of the two
formulations:

min
S⊂V

C4S1 S̄5

min8�S�1 �S̄�9
= min

S⊂V 1 �S�¶n/2

C4S1 S̄5

�S�
0

Here the goal is to achieve a bipartition that is as balanced
as possible in terms of the size of the two sets S and S̄.

• Cheeger constant (Cheeger 1970, Chung 1997).

hG = min
S⊂V

C4S1 S̄5

min8d4S51d4S̄59
0

The problem can be written equivalently as,

hG = min
S⊂V 1d4S5¶d4V 5/2

C4S1 S̄5

d4S5
0

The goal here is to get both sets to have large similarity
within. Lemma 2 demonstrates why this is the case for this
objective function.

• Normalized cut (Shi and Malik 2000). This problem
has one term equal to the objective of Cheeger constant,
and a second term

NCG = min
S⊂V

C4S1 S̄5

d4S5
+

C4S1 S̄5

d4S̄5
0 (9)

The normalized cut problem is considered as a “double
form” of Cheeger constant problem, or Cheeger constant
problem is viewed as “half-normalized cut.” That is because
Cheeger constant is the larger of the two terms in the objec-
tive of normalized cut. These bounds, attained for hG in
terms of the second smallest eigenvalue �1, were estab-
lished via the relationship to NCG, which was then related
to the eigenvalue, (see Theorem 1 for proof).

• Conductance problem. This problem is a directed ver-
sion of Cheeger constant. It is defined on a directed graph
G= 4V 1A5, where the weight of arc 4i1 j5 is the transition
probability from i to j , pij , and the sum of all arc weights
is one. Here the node weights �i are equal to

∑

4i1 j5∈A pij ,
the weight of outgoing arcs from node i:

�G = min
S⊂V 1�4S5¶1/2

C4S1 S̄5

�4S5
0 (10)

As mentioned in the introduction, conductance ratio arises
in the context of Markov chains where an important goal
is to establish the “mixing rate” of Markov chains. For
a conductance ratio equal to �, the upper bound on the
mixing rate is a function of 1/�2. For a discussion, proof
of this result, and additional details on the problem the
reader is referred to Sinclair (1992) and to Jerrum and
Sinclair (1997).

• Quantity-normalized cut. The quantity normalized cut
is a strict generalization of normalized cut. Instead of
restricting the denominators to be the sum of the total
weighted degrees of the nodes in the set, here each node
has a quantity qi associated with it, and the sum is of these
quantities are not necessarily equal to the total weighted
degrees:

q-NCG = min
S⊂V

C4S1 S̄5

q4S5
+

C4S1 S̄5

q4S̄5
0

• Half-quantity-normalized cut. This problem is the one
term form of the quantity-normalized cut. Its relationship
to the quantity-normalized cut is analogous to the relation
of Cheeger to normalized cut:

half-q-NCG = min
S⊂V 1q4S5¶q4V 5/2

C4S1 S̄5

q4S5
0 (11)

• Size-normalized cut. This quantity is the “double
form” of the expander problem and is used to bound
the expander ratio of a graph. It can be viewed as an
unweighted normalization version of the normalized cut
problem where all node weights are equal to one. We thus
call it “size normalized”:

min
S⊂V

C4S1S5

�S�
+

C4S̄1 S̄5

�S̄�
0

• The uniform sparsest cut. minS⊂V 4C4S1 S̄5/4�S� · �S̄�55.
We claim that this problem is equivalent, and has the

same optimal solution, as the size-normalized cut problem.

Lemma 1. The uniform sparset cut has the same set of
optimal solutions as the size-normalized cut.

Proof. To see the equivalence, note that

C4S1 S̄5

[

1
�S�

+
1

�S̄�

]

=C4S1 S̄5

[

�S�

�S��S̄�
+

�S̄�

�S��S̄�

]

= n ·
C4S1 S̄5

�S� · �S̄�
0

Therefore any optimal solution to the size-normalized cut
is an optimal solution to the uniform sparsest cut, and vice
versa, the uniform sparsest cut optimal solution value is
41/n5 · s-NCG. Q.E.D.

• Normalized cut′. Sharon et al. (2006) defined the fol-
lowing problem, calling it “normalized cut,” and stating it
is NP-hard:

NC′

G = min
S⊂V

C4S1 S̄5

C4S1S5
0 (12)

The solution to this problem is a subset S that is as dis-
similar as possible to S̄ and that also has similarity within,
measured by C4S1S5, as large as possible. This problem
was shown to be polynomial time solvable in Hochbaum
(2010). This variant of normalized cut is equivalent to the
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problem of minimizing one term, minS⊂V 4C4S1 S̄5/d4S55,
in (9), as proved in the next lemma:

Lemma 2 (Hochbaum 2010). The sets of optimal solutions
to NC′

G and minS⊂V 4C4S1 S̄5/d4S55 are identical.

Proof.

C4S1 S̄5

C4S1S5
=

C4S1 S̄5

d4S5−C4S1 S̄5
=

1

4d4S5/C4S1 S̄55− 1
0

Therefore, minimizing this ratio is equivalent to maximiz-
ing d4S5/C4S1 S̄5, which in turn is equivalent to minimiz-
ing the reciprocal quantity C4S1 S̄5/d4S5, which is the first
term in (9), as claimed. Q.E.D.

It is important to note that in problem NC′

G there is
no balance restriction on the size of the set S or the
total weight of C4S1S5 as compared to C4V 1V 5. This is
in fact the constraint that turns the polynomial problem
into an NP-hard problem. With this constraint, the prob-
lem mind4S55¶d4V 5/24C4S1 S̄5/d4S55 is the same as the half-
normalized-cut problem and is NP-hard.

• Weighted ratio region. The unweighted version of this
problem was introduced as “ratio region” by Cox et al.
(1996). Cox et al. (1996) presented, for the unweighted
version on planar graphs, a polynomial time algorithm.
Hochbaum (2010) introduced the weighted version of the
problem and presented a polynomial time algorithm solv-
ing the weighted and unweighted problems, for any graph,
without restriction on its topology. For qi the weight of
node i, q4S5=

∑

i∈S qi the problem is

min
S⊂V

C4S1 S̄5

q4S5
0

This problem, with the balance constraint q4S5 ¶ 1
2q4V 5,

added, is the half-quantity-normalized-cut problem.
The double forms of the problems are within a factor of

two of the respective single-form problems as shown next.
These double forms have been used (at least implicitly) by
Cheeger (1970) and Chung (1997) for bounding Cheeger
constant and the expander ratio of a graph, and explicitly
here for the more general half-normalized cut in Lemma 3:

Theorem 1. For a graph G:
1. 1

2 · s-NCG ¶ ExpG ¶ s-NCG;

2. 1
2 · NCG ¶ hG ¶ NCG;

3. 1
2 · q-NCG ¶�G ¶ q-NCG.

Proof. Let S∗ be an optimal solution to minS⊂V 4C4S1 S̄5 ·

61/�S� + 1/�S̄�75, the size-normalized cut problem. Then,

ExpG = min
S⊂V 1 �S�¶�V �/2

C4S1 S̄5

�S�
¶ C4S∗1 S̄∗5

�S∗�

¶C4S∗1 S̄∗5 ·

[

1
�S∗�

+
1

�S̄∗�

]

= s-NCG0

Now, let SExp be an optimal solution to
minS⊂V 1 �S�¶�V �/24C4S1 S̄5/�S�5, the expander ratio. Then,

1
2
s − NCG ¶ 1

2
·C4SExp1 ¯SExp5 ·

[

1
�SExp�

+
1

� ¯SExp�

]

0

Because �SExp� ¶ �V �/2, the first term in the lat-
ter two terms sum is the larger one. Thus, 1

2 s-NCG ¶
C4SExp1 ¯SExp5/�SExp� = ExpG. The proofs for 2 and 3 are
similar. Q.E.D.

We conclude that the optimal solutions for the respec-
tive problems of size-normalized cut, normalized cut, and
quantity-normalized cut, are 2-approximations to expander,
Cheeger, and half-quantity-normalized cut, respectively.
Because all these problems are NP-hard, any “good”
approximation algorithms for the normalized cut problems
would translate to a good approximation, with an extra
factor of two, for expander, Cheeger, and half-quantity-
normalized cut problems. Indeed, the spectral technique
and the (equivalent; see Remark 1) Markov chain method
used to generate solutions to expander, Cheeger, conduc-
tance, and the normalized cut problems, apply the spectral
method to the corresponding Rayleigh problem rather than
directly for the original formulation. The Rayleigh prob-
lem is equivalent to each of the normalized cut problems as
shown in Lemma 3, and this accounts for the extra factor
of two to the bounds in (3).

Remark 1. Computing the principal eigenvector of a
matrix A= 4aij5 can be done by an iterative technique—the
power method (Vargas 1962): For a given initial guess of
the eigenvector x0 (typically equal to 1), this is a recursive
procedure based on

lim
k→�

Akx0

�Akx0�
= x∗0 (13)

The advantage of the use of this recursion is that it is
inherently distributed and localized. Each iteration is imple-
mented by following a walk from each node i to node j
with probability aij/

∑n
p=1 aip. The count of the number

of visits to each node after a number of iterations, is an
estimate of the relative weight of the respective entry in
the eigenvector. The drawbacks include several technical
requirements on convergence conditions that often are not
satisfied. An adaptation of the same technique is often used
to find the Fiedler eigenvector in the context of the con-
ductance problem.

The list of problems addressed here is summarized in
Table 1.

3. The Normalized Cut Problems as
Rayleigh Problems

For a real vector y ∈Rn, a matrix L=D−W , and a diag-
onal matrix Q, we introduce the continuous relaxation of
the Rayleigh problem as

Rr4Q5= min
yT Q1=0

yTLy
yTQy

0
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Table 1. List of problems addressed here.

Problem name Objective Complexity Notation

Expander min
S⊂V 1 �S�¶�V �/2

C4S1 S̄5

�S�
NP-hard ExpG, half-s-NCG

Cheeger min
S⊂V 1d4S5¶d4V 5/2

C4S1 S̄5

d4S5
NP-hard hG, half-NCG

Conductance min
S⊂V 1�4S5¶1/2

C4S1 S̄5

�4S5
NP-hard �G, directed-half-NCG

Half-quantity − normalized cut min
S⊂V 1q4S5¶q4V 5/2

C4S1 S̄5

q4S5
NP-hard half-q-NCG

Size-normalized cut min
S⊂V

C4S1 S̄5

�S�
+

C4S1 S̄5

�S̄�
NP-hard s-NCG

Normalized cut min
S⊂V

C4S1 S̄5

d4S5
+

C4S1 S̄5

d4S̄5
NP-hard NCG

Quantity-normalized cut min
S⊂V

C4S1 S̄5

q4S5
+

C4S1 S̄5

q4S̄5
NP-hard q-NCG

Uniform-sparsest cut min
S⊂V

C4S1 S̄5

�S� · �S̄�
NP-hard = s-NCG

Normalized cut′ min
C4S1 S̄5

C4S1V 5
Polynomial∗ NC′

G

Ratio region min
C4S1 S̄5

�S�
Polynomial∗ RRG

Weighted ratio region min
C4S1 S̄5

q4S5
Polynomial∗ WRRG

∗Polynomial time algorithms are given in Hochbaum (2010).

The discrete Rayleigh ratio problem, b-DRR, for a scalar
b¾ 0 is

R4Q1b5= min
yi∈8−b119

yTLy
yTQy

0

The Rayleigh problem is

min
yi∈8−b119

Rr4Q5= min
yT Q1=0

R4Q1b5= min
yT Q1=01 yi∈8−b119

yTLy
yTQy

0

We show next that for Q = I , Q = D, and general Q,
the Rayleigh problem is equivalent to the size-normalized
cut, the normalized cut, and the quantity-normalized cut,
respectively.

Lemma 3. For a diagonal matrix Q, with Qii = qi ¾ 0,

min
yT Q1=01 yi∈8−b119

yTLy
yTQy

= min
�6=S⊂V

C4S1S5

q4S5
+

C4S̄1 S̄5

q4S̄5
0

Proof. Let the variables yi be binary with values −b or
1 defined as follows:

yi =

{

1 if i ∈ S

−b if i ∈ S̄0

We first note that, yTQy= q4S5+ b2q4S̄5. Secondly, the
orthogonality constraint, yTQ1 = 0 is equivalent to b =

q4S5/q4S̄5. The latter is a form of a balance requirement
on the two parts of the bipartition, which is why we refer
to this constraint as the balance constraint:

yTLy= yTDy− yTWy

=
∑

i∈S

di + b2
∑

i∈S̄

di

− 6C4S1S5− 2bC4S1 S̄5+ b2C4S̄1 S̄57

=C4S1S5+C4S1 S̄5+ b2C4S1 S̄5+ b2C4S̄1 S̄5

− 6C4S1S5− 2bC4S1 S̄5+ b2C4S̄1 S̄57

= 41 + b2
+ 2b5C4S1 S̄5= 41 + b52C4S1 S̄50

Therefore,

min
yT Q1=01 yi∈8−b119

yTLy
yTQy

= min
yT Q1=01 S⊂V

41 + b52C4S1 S̄5

q4S5+ b2q4S̄5
0

We now substitute yTQ1 = 0 by the equivalent expres-
sion b = q4S5/q4S̄5,

41 + b52C4S1 S̄5

q4S5+ b2q4S̄5
=

41 + q4S5/q4S̄552C4S1 S̄5

q4S5+ 4q4S5/q4S̄55
2
q4S̄5
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=
41 + q4S5/q4S̄552C4S1 S̄5

q4S541 + q4S5/q4S̄55

=
41 + q4S5/q4S̄55C4S1 S̄5

q4S5
0

Hence,

min
yT Q1=01 yi∈8−b119

yTLy
yTQy

= min
S⊂V

C4S1 S̄5

[

1
q4S5

+
1

q4S̄5

]

as claimed. Q.E.D.

Corollary 1. The size-normalized cut, normalized cut,
and quantity-normalized cut problems are equivalent to
minimizing the discrete Rayleigh ratio on discretely valued
variables yi ∈ 8−b119, b-DRR, and for Q = I , Q =D and
Q unrestricted, respectively.

Corollary 2. The normalized cut’ and weighted ratio
region problems are equivalent to minimizing R4Q105 for
Q =D and Q unrestricted, respectively.

Proof. As shown in the proof of Lemma 3, yTLy =

41 + b52C4S1 S̄5 which for b = 0 is equal to C4S1 S̄5. The
denominator yTQy = q4S5 + b2q4T 5, which is q4S5 for
b = 0. When Q is set equal to D we get the problem
minS⊂V 4C4S1 S̄5/d4S55, which is equivalent to the normal-
ized cut’ problem, minS⊂V 4C4S1 S̄5/C4S1 S̄55. When Q is
unrestricted we get the problem minS⊂V 4C4S1 S̄5/q4S55,
which is the value of WRRG. Q.E.D.

These corollaries then frame the results in Hochbaum
(2010) as equivalent to solving the respective Rayleigh
ratios for the value of b = 0. The DRR algorithm intro-
duced here is more general and more efficient than the
algorithm in Hochbaum (2010), as noted in §1.3. However,
if we wish to minimize the ratio of the cut with respect
to one set of weights, divided the similarity within cluster
with a second set of weights, minS⊂V 4C14S1 S̄5/C24S1 S̄55,
the transformation to the Rayleigh ratio problem does
not apply. This problem is solved by the algorithm in
Hochbaum (2010) but not by the more efficient algorithm
described here.

4. The Spectral Relaxation
As the Rayleigh problem is NP-hard, one possible heuristic
approach is to relax the problem by eliminating the require-
ments on the variables that yi ∈ 8−b119 and permitting each
yi to assume any real value. The spectral relaxation is to
minimize the Rayleigh ratio Rr4Q5.

For Q nonnegative, the optimal solution to Rr4Q5 is
attained by setting the vector y equal to the second small-
est eigenvector solving Ly= �Qy for the smallest nonzero
eigenvalue �. This is done by solving Q−1/2LQ−1/2z = �z
for the eigenvector z that corresponds to the second small-
est eigenvalue (the smallest eigenvalue is zero) and setting
y = Q−1/2z. To map this solution to a partition, a feasible

solution, one sets all the positive entries of yi to one, and
hence i is in S, and all the remaining ones are assigned
to S̄. Alternatively, another threshold value is chosen, and
all values of yi that exceed the threshold value are set to S
and the others to S̄.

Notice that Theorem 1 together with Lemma 3 imply
immediately the lower bound on Cheeger constant,
�1/2 ¶ hG. That is because the value of the relaxation can
only be smaller than the value of the optimum of the
Rayleigh problem.

5. The DRR Algorithm Solving the
Discrete Rayleigh Ratio Problem

The DRR algorithm solves a relaxation of the Rayleigh
problem resulting from omitting constraint yTD1 = 0 and
specifying the value of b, R4Q1b5. We call this prob-
lem discrete Rayleigh relaxation, or b-DRR, and denote its
value by �G4b5:

(b-DRR) �G4b5= min
yi∈8−b119

yTLy
yTQy

= min
�⊂S⊂V

41 + b52C4S1 S̄5

q4S5+ b2q4S̄5
0 (14)

Because this is a relaxation of the Rayleigh problem
we get, as before, from Theorem 1 and Lemma 3 that
for �G the optimal value of the half-quantity normalized cut,
�G4b5/2 ¶ �G. Furthermore,

max
b¾0

�G4b5/2 ¶ �G0

For the special case of Cheeger constant maxb¾0 �G4b5/
2 ¶ hG.

To solve (14) we first “linearize” the ratio function:
A general approach for minimizing a fractional (or as it
is sometimes called, geometric) objective function over a
feasible region F, minx∈F4f 4x5/g4x55, is to reduce it to
a sequence of calls to an oracle that provides the yes/no
answer to the following �-question: Is there a feasible sub-
set x ∈F such that 4f 4x5−�g4x5 < 05?

If the answer to the �-question is yes then the optimal
solution has a value smaller than �. Otherwise, the optimal
value is greater than or equal to �. A standard approach is
then to utilize a binary search procedure that calls for the
�-question O4log4UF 55 times in order to solve the prob-
lem, where U is an upper bound on the value of the numer-
ator and F an upper bound on the value of the denominator.

Therefore, if the linearized version of the problem, that
is the �-question, is solved in polynomial time, then so
is the ratio problem. Note that the number of calls to the
linear optimization is not strongly polynomial but rather,
if binary search is employed, depends on the logarithm of
the magnitude of the numbers in the input. In our case
however there is a more efficient procedure.
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Figure 1. The graph Gb
st illustrated for an image seg-

mentation grid problem with 4-neighborhood
set-up and node weights qi.
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i j

S�

�qj

�qi

�b2qj

�b2qi
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∞

(1+b)2wij

The �-question of whether the value of b-DRR is less
than � is equivalent to determining whether

min
yi∈8−b119

yTLy−�yTDy

= min
S⊂V

41 + b52C4S1 S̄5−�6q4S5+ b2q4S̄57 (15)

is negative. We next construct an s1 t graph, Gb
st , which

corresponds to G= 4V 1E5 for a fixed value of b illustrated
in Figure 1. We prove that the source set S of the minimum
s1 t-cut in Gb

st is an optimal solution to (15). Furthermore,
the solution, for all values of �, and thus for the optimal
ratio is generated in the complexity of a single minimum
s1 t-cut.

The graph Gb
st is constructed as follows: We add a

source node s and a sink node t. For each edge 6i1 j7 ∈ E
there is a pair of arcs 4i1 j51 4j1 i5 ∈ Ast both with capac-
ity 41 + b52wij . For each node i, there is an arc 4s1 i5 of
capacity �qi, and an arc 4i1 t5 of capacity �b2qi. Two nodes
s′1 t′ ∈ V are designated as seed source and seed sink,
respectively. This is done by assigning infinite capacity to
4s1 s′5 and to 4t′1 t5. This assignment guarantees that in any
feasible solution s′ will be part of the source set S and t′

will be part of the sink set S̄. This will rule out the trivial
solutions of S = � or S = V .

Theorem 2. The source set of a minimum cut in the graph
Gst is an optimal solution to the linearized (b-DRR), (15).

Proof. Let 4S ∪ 8s91 T ∪ 8t95 be a partition of V ∪ 8s1 t9
corresponding to a finite capacity s1 t-cut in Gst . We com-
pute this cut’s capacity:

C4S ∪ 8s91 T ∪ 8t95= �q4T 5+�b2q4S5+C4S1T 5

= �41 + b25q4V 5−�q4S5−�b2q4T 5

+C4S1T 50

Now the first term, �41 + b25q4V 5, is a constant. Thus
minimizing C4S∪ 8s91 T ∪ 8t95 is equivalent to minimizing
41+b52C4S1 S̄5−�6q4S5+b2q4S̄57, which is the objective
of (15). Q.E.D.

Figure 2. Updated source and sink adjacent arcs’
capacities.
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Graph Gst can be simplified: We distinguish between
the cases where b > 1 or b < 1 or b = 1. When b > 1
then all source adjacent finite capacity arcs are saturated,
as the flow of �qi saturates the arc 4s1 i5 and is below the
capacity of 4i1 t5, �b2qi. We can thus subtract the lower
capacity from both resulting in an equivalent graph with
sink adjacent capacities equal to �4b2 − 15qi and source
adjacent capacities equal to zero (except for the seed s′).
Similarly, for b < 1 we subtract �b2qi from the capacity of
4s1 i5 and 4i1 t5. This results in no node adjacent to sink.
We therefore choose a sink “seed” node u and connect it to
t with infinite capacity arc. The capacity of the arcs from s
to each node i is then �41−b25qi as illustrated in Figure 2.
In the case b = 1 the analogous update results in all source
adjacent and sink adjacent arcs having zero capacity.

We next scale the graph arc weights by multiplying all
arc capacities by a nonnegative scalar �. For �> 0 a min-
imum cut of capacity C in a graph Gst is also a minimum
cut of capacity �C in the scaled graph � · Gst . Here we
choose �= 1/41 + b52 as illustrated in Figure 3.

In the updated graph Gst either all source adjacent nodes
are proportional to � or all sink adjacent nodes are pro-
portional to �. This is therefore an instance of paramet-
ric minimum cut, where all the arcs adjacent to source
are monotone nondecreasing with the parameter � and all
arcs adjacent to sink are monotone nonincreasing with the
parameter �. A parametric minimum cut procedure can then
be applied to find the largest value of � so that the � ques-
tion is answered in the affirmative. The running time of
the procedure is the running time of solving for a single
minimum cut, using the push-relabel algorithm as in Gallo

Figure 3. Scaling arc weights in Gst .
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et al. (1989), or using the HPF algorithm, as in Hochbaum
(2008). Within this run time, all breakpoints of the param-
eter � are generated, where the cut is changing by at least
a single node. It is well known that there are no more than
n breakpoints, (see, e.g., Hochbaum 2008).

Because the normalized cut’ problem is a special case
with Q = D and b = 0, we get a polynomial time algo-
rithms for the problem immediately. This running time is
T 4n1m5 for a graph or digraph on n nodes and m edges
or arcs. This run time improves on the running time of
the polynomial time algorithm in Hochbaum (2010), which
is based on a non-Rayleigh formulation and has running
time of T 4m1m5. For Q =D and b = 1 the problem is the
simple minimum cut problem (we leave this to the reader
to verify).

5.1. Solving for All Values of b Efficiently

For each value of b the optimal solution to the ratio prob-
lem may be different. Yet, any optimal solution for b cor-
responds to a bipartition from the same universal set of
“breakpoint” solutions common to all values of b, as shown
next.

To implement the parametric procedure efficiently, we
choose a parameter �= � · 441 − b5/41 + b55 for b < 1 and
� = � · 44b− 15/41 + b55 for b > 1. There are no more
than n breakpoints for �. There are l ¶ n nested source
sets of minimum cuts each corresponding to one of the
l breakpoints. Given the values of � at the breakpoints,
8�11 0 0 0 1�l9, we can generate, for each value of b, all the
breakpoints of �b. For b < 1, �b

i = �i · 441 + b5/41 − b55.
Consequently, by solving once the parametric problem for
the parameter � we obtain simultaneously, all the break-
point solutions for every value of b, in the complexity of a
single minimum cut, T 4n1m5.

The one breakpoint solution that minimizes the ratio
for a given value of b depends on the value of b. But
any scaling of the numerator or denominator of the ratio
may give a different optimal solution that coincides with
a different breakpoint. We contend that a ratio is a rather
arbitrary form of weighing the two different objectives in
the numerator and denominator, and the scalar multiplica-
tion of the numerator can change that relative weighing.
We use a “good” selection of a breakpoint in the experi-
mental study reported in §6, which is the one that gives the
best value of the respective objective function (normalized
cut, or q-normalized cut).

6. Experimental Results
An extensive experimentation was conducted comparing
the performance of the combinatorial algorithm proposed
here, versus that of the spectral technique, on image seg-
mentation instances. A detailed report of the complete
experimental study for image segmentation is given in
Hochbaum et al. (2012). We sketch here some of the high-
lights of the experiments that evaluate the performance

of the algorithms in terms of how well they approximate
the objective values of normalized cut and q-normalized
cut. Hochbaum et al. (2012) also addressed the subjec-
tive visual quality of the segmentation, which we mention
briefly below.

Because the spectral method’s solution is dependent on
the discretizing method applied to the continuous Fiedler
eigenvector, we present here results for two different
approaches. One is the sweep technique, where for each
possible threshold cutoff of the eigenvector there is a
corresponding bipartition and the objective value of that
bipartition is evaluated. The solution of the spectral sweep
technique ultimately reports the one bipartition solution
with the best (smallest) value of the objective function.
Here we consider the objective functions of normalized cut
and quantity-normalized cut. A different technique, utilized
by Shi, as reported in Yu and Shi (2003) and in what we
refer to as Shi’s code (2008), generates a bipartition from
the Fiedler eigenvector, which is claimed to give a superior
approximation to the objective value of the respective nor-
malized cut. We used an implementation of the sweep tech-
nique and Shi’s code as representing the performance of the
spectral method. Because the default size of the images for
Shi’s code is 160 × 160 the number of solutions compared
by the sweep technique is 25,599.

For the DRR algorithm, we evaluate the solutions at all
the breakpoints for the objective value of normalized cut
and quantity normalized cut, and we select the one that has
the smallest value. The number of breakpoints evaluated
for all images in this experiment varied from 10 to 20.

The image database consists of 20 benchmark images
from the Berkeley Segmentation Data Set and Benchmark
(http://www.eecs.berkeley.edu/Research/Projects/CS/vision/
grouping/segbench/). Figure 4 shows the 20 benchmark
images used in the experimental study, referred to
sequentially from image 1 to image 20.

The benchmark images used here consist of grayscale
images. A color intensity value is associated with every
pixel, represented as an integer in 6012557 in MATLAB.
This is normalized and mapped to 60117. The similarity
weight between a pair of pixel nodes is a function of the
difference of their color intensities. For pi and pj the color
intensities of two neighboring pixel nodes i and j , the expo-
nential similarity weight is defined as

wij = e−��pi−pj �1 (16)

where � is a parameter that can be adjusted. In the experi-
ments we set �= 100.

The performance of the algorithms was tested with
respect to the normalized cut and the q-normalized cut
problems. For q-normalized cut the values of the node
weights qi were set equal to the entropy of the respective
pixel. The entropy of an image is a measure of randomness
in the image that can be used to characterize the texture of
an image. In MATLAB, by default the local entropy value
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Figure 4. The 20 benchmark images.

(a) Image 1 (b) Image 2 (c) Image 3 (d) Image 4 (e) Image 5

(f) Image 6 (g) Image 7 (h) Image 8 (i) Image 9 (j) Image 10

(k) Image 11 (l) Image 12 (m) Image 13 (n) Image 14 (o) Image 15

(p) Image 16 (q) Image 17 (r) Image 18 (s) Image 19 (t) Image 20

Source. http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/.

of a pixel is the entropy value of the 9-by-9 neighborhood
around the pixel. In our experiment, the entropy of a pixel
was computed directly via the MATLAB built-in function
entropyfilt.

In sum, we present here the comparison of the DRR
algorithm with the spectral method solution generated by
Shi’s code and with the sweep method. Both are applied
to the Fiedler eigenvector output. The comparison of DRR
algorithm with these two spectral methods is evaluated for
instances generated by the 20 images in terms of achieving
best value for normalized cut and for q-normalized cut.
Altogether there are four sets of experiments applied to the
20 image graphs:

1. DRR algorithm versus Shi’s spectral solution for nor-
malized cut;

2. DRR algorithm versus Shi’s spectral solution for
q-normalized cut;

3. DRR algorithm versus sweep method solution for nor-
malized cut;

4. DRR algorithm versus sweep method solution for
q-normalized cut.

6.1. DRR Algorithm vs. Shi’s Spectral Solution for
Normalized Cut and for q-Normalized Cut

Each solution generated is a bipartition, which is then
plugged into the normalized cut (NC) objective func-
tion. The smaller the value, the better the approximation.
Because DRR algorithm almost always delivers a better
solution, the results are presented here in the form of the
ratio of the value of the spectral solution NC value to the
value of the DRR-algorithm’s solution NC value. The larger
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Table 2. The ratios of the normalized cut objective
value of Shi’s code spectral solution to the nor-
malized cut objective value of DRR algorithm.

Image 1 Image 2 Image 3 Image 4 Image 5
191052741 340945958 228088261 203501553 5221467035

Image 6 Image 7 Image 8 Image 9 Image 10
4512421414 757189801 800008425 110785929 357012512

Image 11 Image 12 Image 13 Image 14 Image 15
1115140768 125005640 408974465 1141700076 233003002

Image 16 Image 17 Image 18 Image 19 Image 20
130482913 160897142 345039787 471005938 605424435

the value of the ratio, the better is the improvement of
DRR algorithm of the spectral method. Table 2 gives these
ratios for the normalized cut objective value. For all images,
the DRR algorithm performed better than the spectral
method.

Table 3 provides the ratios of the values of the spec-
tral solution divided by the value of the DRR solution
for the q-normalized objective value. Here again, for all
images, the DRR algorithm performed better than the spec-
tral method, and the rate of improvement is dramatically
higher than that for the respective normalized cut instances.

In Table 4 we summarize the extent of the improvement
factors of DRR algorithm over the spectral method by pro-
viding the mean and the median values of those ratios.

The improvement ratios of the DRR algorithm over Shi’s
code spectral solution are summarized as a bar chart on a
logarithmic scale in Figure 5.

6.2. DRR Algorithm vs. Sweep Method Solution
for Normalized Cut and for q-Normalized Cut

Recall that the sweep method checks the values, for all pos-
sible thresholds, of the bipartitions, and selects the solution
that is best with respect to the objective function of normal-
ized cut or q-normalized cut. Therefore the performance
of the sweep method is expected to be better than that of
the spectral method that does not choose among all possi-
ble threshold partitions. In Table 5 the ratios of the values
of the sweep method solution divided by the value of the
DRR algorithm solution are indeed smaller than those for
the spectral method of Shi’s code, and there are instances
where the sweep method improves on the DRR algorithm.

Table 3. The ratios of the q-normalized cut objective value of Shi’s code spectral
solution to the q-normalized cut objective value of the DRR algorithm.

Image 1 Image 2 Image 3 Image 4 Image 5
91358115309 31599190409 6541763023 51346125601 1141819961100

Image 6 Image 7 Image 8 Image 9 Image 10
108295880 × 1013 106418361 × 1011 9218521128 1310790179 6310711852

Image 11 Image 12 Image 13 Image 14 Image 15
6183514171700 513881176 4311894004 31397136809 2175517011700

Image 16 Image 17 Image 18 Image 19 Image 20
1315241963 11440166601 1413171766 2216931749 6811058090

Table 4. The means and medians of the improvements
of the combinatorial algorithm on Shi’s code
with exponential similarity weights.

Mean of Median of
improvements improvements

Normalized cut 2,326,927.7 230.95632
q-normalized cut 902356550 × 1011 11,441,558

Figure 5. Bar chart for the ratios in Table 2 and
Table 3.
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Note. The darker bars represent ratios for normalized cut (Table 2), and
the lighter bars represent ratios for q-normalized cut (Table 3).

Although the sweep algorithm improves on the spec-
tral method of Shi’s code, and is better in some instances
than the DRR algorithm for the normalized cut problem,
it is still not in the ballpark of the performance of the
DRR algorithm for the q-normalized cut problem as seen
in Table 6.

The means and medians of the improvement of DRR
algorithm over the sweep method are given in Table 7. The
respective means and medians of the improvement of the
sweep method over DRR algorithm are given in Table 8.

Finally, we summarize in the bar chart in Figure 6
the ratios of improvements, as before. Here, the extent
of improvement in instances where the sweep method
improves on DRR algorithm are marked with the bars that
extend to the left, and the bars that extend to the right indi-
cate a better performance of the DRR algorithm.
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Table 5. The ratios of the normalized cut objective value of the spectral sweep
technique to the normalized cut objective value of the DRR algorithm.

Image 1 Image 2 Image 3 Image 4 Image 5
0012676509 00030815693 107318891 0055478004 10021992

Image 6 Image 7 Image 8 Image 9 Image 10
320769017 151105305 100124601 100757747 160970223

Image 11 Image 12 Image 13 Image 14 Image 15
3122907642 107051154 0059025832 0007758062 130387584

Image 16 Image 17 Image 18 Image 19 Image 20
00031279526 102725133 106439209 0056137852 0022995850

Table 6. The ratios of the q-normalized cut objective value of the spectral
sweep technique to the q-normalized cut objective value of the DRR
algorithm.

Image 1 Image 2 Image 3 Image 4 Image 5
11612197101 2951255 2221060029 4190404776 2615241576

Image 6 Image 7 Image 8 Image 9 Image 10
20141613031000 16168611941000 2481921064 6140404956 2315581163

Image 11 Image 12 Image 13 Image 14 Image 15
2109715201100 11344147401 8019340898 9211433037 2517491626

Image 16 Image 17 Image 18 Image 19 Image 20
5414030132 2161141034 11191118604 919831867 7013000882

Table 7. The means and medians of the improvements of the combinatorial
algorithm on the spectral sweep technique with exponential similarity
weights.

Mean of Median of
improvements improvements

Normalized cut 1218620988 107185022
q-normalized cut 1196416051100 11056130909

Table 8. The means and medians of the improvements of the spectral sweep
technique on DRR algorithm. Notice that for q-normalized cut, there
is no improvement of the sweep method on DRR algorithm.

Mean of Median of
improvements improvements

Normalized cut 110853231 601186089

Figure 6. Bar chart for the ratios in Table 5 and Table 6.
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Note. The darker bars represent ratios for normalized cut (Table 5), and
the lighter bars represent ratios for q-normalized cut (Table 6).

This set of experiments confirms that the DRR algorithm
is not only more efficient than the spectral method, it also
provides much better solutions than those provided by the
spectral method.

In the extensive experimental study described in
Hochbaum et al. (2012), the visual quality of the bipar-
titions, or segmentations, is investigated as well. The
conclusion from this study is that the DRR algorithm is far
superior to the sweep method in terms of visual quality, and
it improves also on variants of Shi’s code that are designed
specifically to deliver good visual quality.

7. Conclusions
We provide here for the first time an efficient combinato-
rial algorithm solving a discrete relaxation of a family of
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NP-hard Rayleigh problems. Compared to the well-studied
spectral approach that solves a continuous relaxation of
these problems, the algorithm is efficient, combinatorial,
and requires less storage space. Experimental results further
demonstrate that in addition to being more efficient in prac-
tice, the proposed algorithm delivers solutions that are often
much closer to the optimal objective value of the respective
NP-hard problem as compared to the spectral technique.
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