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Abstract One way of reducing false-positive and false-negative errors in an alerting
system, is by considering inputs from multiple sources. We address here the problem
of detecting nuclear threats by using multiple detectors mounted on moving vehicles
in an urban area. The likelihood of false alerts diminishes when reports from several
independent sources are available. However, the detectors are in different positions
and therefore the significance of their reporting varies with the distance from the
unknown source position. An example scenario is that of multiple taxi cabs each
carrying a detector. The real-time detectors’ positions are known in real time as these
are continuously reported from GPS data. The level of detected risk is then reported
from each detector at each position. The problem is to delineate the presence of
a potentially dangerous source and its approximate location by identifying a small
area that has higher than threshold concentration of reported risk. This problem of
using spatially varying detector networks to identify and locate risks is modeled and
formulated here. The problem is then shown to be solvable in polynomial time and
with a combinatorial network flow algorithm.
Keywords: Nuclear threat detection, network flow, parametric cut.

1 Introduction

We consider here a scenario in an urban environment facing potential nuclear threats
such as “dirty bombs”. With recent technology it has become operational and cost-
effective for multiple detectors to be mounted on vehicles in public service. Sodium
Iodine detectors are currently deployed on vehicles such as police cars, fire trucks,
trains, buses or even taxi cabs. A scenario involving taxi cabs carrying detectors
in Manhattan was recently proposed by Fred Roberts (at the ARI Washington DC
conference) as a problem of interest. The information transmitted by the detectors
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is to be used as input in a process which is to identify a “small region” with a
“high concentration” of risk. We formalize and define this problem quantitatively
and devise an efficient graph algorithm that solves the problem in polynomial time.

Detecting nuclear threats is a challenging problem under any circumstances. The
detection task is more challenging when the relative positions of the detector and
the source, if exists, are unknown. The sensitivity of the detectors is diminishing
with distance from the source, thus their geographic position impacts the reliability
of their reporting. Further, a detector may fail to detect correctly an existing threat
(false-negative), or report an alert on the existence of a nuclear source when there
is none (false-positive). The likelihood of false reports is diminished and their ef-
fect is mitigated when relying on reports from several independent sources. We are
interested in reducing the likelihood of false-positive and false-negative reports on
detecting nuclear threats in an urban environment. The idea is to mount detectors on
every taxi cab in an environment such as New York City, or on police cars in areas
where the density of taxi cabs is small. The position of each detector is known at any
point in time from GPS information transmitted to a central control data processing
facility.

The goal is to identify, at every period of time, a region within the area of interest,
which is limited in size and with high concentration of alerts. The purpose is to de-
lineate the presence of a potentially dangerous source and its approximate location.
The detectors transmitted information, along with the geographical positioning of
the collection of detectors is to be consolidated into reliable reporting on whether
nuclear threat exists, and if so, its approximate position. In case this information
is deemed to indicate a high enough likelihood of real danger, the detection opera-
tions shifts to a high alert state where higher sensitivity detectors and personnel with
expertise will be deployed into the region of interest with the task of pinpointing,
locating and disabling the source of the threat.

The alert concentration problem is quantified here as an optimization problem,
combining two goals: One goal is to identify a small region; another goal is to
have large number of alerts, or high concentration of alerts in the region. These two
goals are potentially conflicting – focusing on a large number of alerts within an
area is likely to result in the entire region; on the other hand focusing on concen-
tration alone would result in a single block of the area containing the highest level
of reported alert, thus disregarding information provided by other detectors in the
adjacent area.
Overview of paper We first provide the formalism for describing the problem. We
then formulate a mathematical programming model for the problem, parametrized
by a weight, β , that balances the relative contribution of the two goals. We then show
how the problem is solvable in polynomial time as a minimum s, t-cut problem.
We further show how to solve the problem for all values of the parameter using a
parametric cut procedure.
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2 Notation and preliminaries

We introduce here graph theoretic notation to be used in formulating the problem.
Without loss of generality we consider the region where the detectors are deployed
to be a rectangular area subdivided in grid squares. These will be small enough to
contain approximately one vehicle and up to two detectors (although this assumption
plays no role in the formulation). Let V be the collection of positions (blocks or
pixels of the grid) in the area considered.

We construct a directed graph G with the set of nodes V corresponding to the set
of blocks. For each adjacent pair of blocks, if one is within the region and the other
outside, the added length to the boundary is 1. The adjacency [i, j] is represented by
a pair of arcs in opposite directions each of capacity 1. These arcs are referred to as
the “adjacency” arcs of G, and denoted by Aa.

Let B1,B2 ⊂ V be two disjoint sets of nodes in a graph G = (V,A) with arc
capacity ui j for each (i, j) ∈ A. The capacity of the cut separating the two sets
is C(B1,B2) = ∑i∈B1, j∈B2,(i, j)∈A ui j. Note that this quantity is not symmetric as
C(B1,B2) is in general not equal to C(B2,B1).

Let S⊂V be the blocks of a selected sub-region. We measure the size of the area
delineated by S, by the length of its boundary, counted as the number of block sides
that separate S from S̄. The length of the boundary of a subset of grid points S is
then ∑i∈S, j∈S̄,(i, j)∈Aa

ui j. Since the set Aa contains arcs of capacity 1, this length is
equal to C(S, S̄) = |{[i, j]|i ∈ S, j ∈ S̄}|. Note that there is no requirement that the set
S is contiguous. Indeed it can be formed of several connected components. It will be
shown that a ratio formulation of the problem can always obtain a solution forming
a single connected component.

Let Gst be a graph (Vst ,Ast), where Vst = V ∪{s, t} and Ast = A∪As∪At in which
As and At are the source-adjacent and sink-adjacent arcs respectively. A flow vector
f = { fi j}(i, j)∈Ast is said to be feasible if it satisfies:
(i) Flow balance constraints: for each j ∈ V , ∑(i, j)∈Ast fi j = ∑( j,k)∈Ast f jk (i.e.,
inflow( j) = outflow( j)), and
(ii) Capacity constraints: the flow value is between the lower bound and upper bound
capacity of the arc, i.e., 0≤ fi j ≤ ui j.

A maximum flow is a feasible flow f ∗ that maximizes the flow out of the source
(or into the sink), called the value of the flow. The value of the maximum flow is
∑(s,i)∈As f ∗si. An s, t cut in Gst (or cut for short) is a partition of Vst to (S∪{s},T ∪
{t}). The capacity of the cut is C(S∪{s},T ∪{t}). The minimum s, t cut is the cut
of minimum capacity, referred to here as min-cut. It is well known (Ford-Fulkerson
[3]) that the maximum value of the flow is equal to the capacity of the min-cut. Every
algorithm known to date that solves the min-cut problem, also solves the maximum
flow problem.
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2.1 The input

The information captured by a detector is a spectrum of gamma ray emissions
recording the frequency at each energy level. As such this is not scalar-valued in-
formation. The analysis of the detected energies spectrum therefore presents a chal-
lenge. The analysis process is currently under development using advanced data
mining techniques (by e.g. the DONUTS research group at UC Berkeley, [2]). The
output of the analysis is an indication of whether the detected information indicates
the presence of a nuclear threat or not.

At a given time instance, let D be the set of positions of taxis with D∗ ⊆ D
representing the set of positions reporting alert. The set D̄∗ = D \D∗ is the set of
taxi positions reporting no alert.

We will consider an extension of the model to account for varying levels of alert
and varying levels of no-alert. This is when the analysis of the detectors transmitted
information delivers, for each alert reported by a detector at i, an alert confidence
level of pi. For each no-alert reported from position j, there is a no-alert confidence
level of q j.

3 Formulating the objective function

Since our objective involves multiple goals, we address these by setting a trade-
off between the importance of the short boundary versus the high concentration of
alerts. One way of trading these off is by minimizing a ratio function – of the length
of the boundary divided by the concentration of alerts in the region. Another, is to
use a weighted combination of the goals.

To formalize the goal of “small area” we define an area to be of small size if it is
enclosed by a “short” boundary. The boundary of an area is then the number of edges
that separate in-region from out-region, or the rectilinear length of the boundary. In
the graph G = (V,Aa) defined in Section 2 the length of the boundary of a set S⊂V
is C(S, S̄). Prior to proceeding, we note that this definition of length needs certain
tweaking. Let the set of boundary blocks of the entire area considered be denoted by
B. With the definition of the set of arcs Aa, the selection of any subset of B reduces
the defined size of the region. For example, if the selected region is all of V then
the length of the circumference C(V, /0) is equal to 0. To prevent that, we add a set
of arcs AB from the boundary nodes to an imaginary point in space. This will be
quantified in a manner explained later. We let the corner blocks contribute 2 to the
length of the boundary, if included in the set. The length of the boundary is thus
C(S, S̄)+ |B∩S| where we count the corner block twice in B (instead of introducing
additional notation.)

Next we formalized the goal of identifying high concentration of alerts. One
indication of the level of alert in an area is the number of alerts at higher than
threshold level within the area. Let for now, for the sake of simplicity, assume that
the inputs are in the form of alert or no-alert. Let D ⊆ V be the set of position
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occupied by vehicles. Let D∗ ⊂D be the set of positions reporting alerts. Part of our
objective is then to identify a subregion of positions containing S so that |D∗∩S| is
maximized.

Maximizing the number of alerts within the selected region is an objective that
has some pitfalls. For instance, if the region considered, S, contains, in addition
to the alerts, also a relatively high number of no-alerts D̄∗ ∩ S, for D̄∗ = D \D∗,
then this should diminish the significance of the alerts in the region. The extent to
which the alert significance is diminished is not obvious at this point in time and
will require simulation studies, which we plan to undertake. Therefore, we add yet
another minimization objective, min |D̄∗∩S|. This objective is then combined with
the length of the boundary objective, as minC(S, S̄)+ |B∩S|+α|D̄∗∩S|. Although,
in terms of the model, we do not restrict the value of α , it is reasonable that α should
be a small value compared to the contribution of alert positions, as discussed below.
If we choose to disregard the number of no-alerts in the region, then this is captured
by setting α = 0.

3.1 Ratio function and weighted combination formulations

One way of combining a maximization objective g(x) with a minimization objective
f (x) is to minimize the ratio of the two functions f (x)

g(x) . For the alert concentration
problem the ratio objective function is:

minS⊂V
C(S,S̄)+|B∩S|+α|D̄∗∩S|

|D∗∩S| .

One advantage of using this ratio formulation is that it is guaranteed that an opti-
mal solution will be a single connected component. This was proved in Hochbaum
[5] for a general family of ratio problems. Formally, we define the concept of addi-
tive functions. For a set of connected components in the graph A1, . . . ,Ak, Ai ⊂ V ,
that are pairwise disjoint, the function f () is said to be additive if f (∪k

j=1A j) =

∑k
j=1 f (A j). For additive ratio functions there is an optimal solution consisting of a

single connected component:

Theorem 1. [Hochbaum 2008] For additive functions f and g, there exists an op-
timal solution to the problem min f (x)

g(x) consisting of a single connected component
and its complement.

It is easy to verify that our functions here are additive, and hence the existence of
a single connected component optimal solution follows.

An alternative to the ratio presentation is to minimize a function which is a linear
combination of the two objectives. Using β as a weight for the relative importance
of the weights, the objective function is:

minS⊆V C(S, S̄)+ |B∩S|+α |D̄∗∩S|−β |D∗∩S|.
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It is in comparison to β that the value of α should be small. This will reflect the
perceived relative diminishing of the threat in the presence of no-alerts in the region.

The solution procedure for this linear combination problem can be used as a
routine for solving the respective ratio problem. A standard technique for solving a
ratio problem is to “linearize” it. The β -question for the problem min f (x)

g(x) is:

Is min f (x)
g(x) ≤ β?

This is equivalent to solving the linear version
Is min f (x)−βg(x)≤ 0?

Therefore if we can solve the linear version of the problem for each β and the
logarithm of the number of possible values of β is small enough (of polynomial
size) then the ratio problem is solved by a polynomial number of calls to the linear
version. Note that the reverse is not necessarily true and the ratio version and the
linear version might be of different complexities (for details on these issues that
reader is referred to [5].)

Here we devise an algorithm that solves the linearized problem, and for all values
of β , in strongly polynomial time.

The linearized objective of the concentrated alert (CA) problem is then modified:

(CA) minS⊆V C(S, S̄)+ |B∩S|−β |D∗∩S|+α|D̄∗∩S|.

The problem (CA) has two parameters, β and α . We show solve the problem for
all values of β provided that α is fixed, and vice versa. Each of these algorithms will
be shown to be running in strongly polynomial time for all values of the parameter.

3.2 Constructing the graph

Let the region be represented by a collection of nodes V of a directed graph where
each block is represented by a node. The set of nodes is appended by a source
dummy node s and sink dummy node t.

An edge represents two adjacent blocks, where the adjacency can be selected
to be any form of adjacency. Here we use either the 4-neighbors adjacency or 8-
neighbors adjacency. The weight of each edge is set to 1, and each edge [i, j] is
replaced by two directed arcs, (i, j) and ( j, i) both of capacity 1. These arcs form
the set Aa.

We connect the set of arcs AB to the sink t with capacities of 1 except for “corner”
blocks that contribute 2 to the length of the boundary. Each position that contains
an alert taxi in D∗ is set to be adjacent to s with a directed arc of capacity β . Each
position that contains a no-alert taxi, in D̄∗, is set to be adjacent to t with a directed
arc of capacity α . We denote these sets of arcs by Aβ and Aα respectively.

We therefore constructed a directed s, t graph Gst = (Vst ,A), where Vst =V ∪{s, t}
and A = Aa∪AB∪Aβ ∪Aα . The construction of the graph is illustrated in Figure 1
where an alert position is indicated by a solid circle, and a no-alert position by a
crossed circle.
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Fig. 1 The graph Gst .

We now have a graph G = (V ∪{s, t},A) with arc capacities ui j for arc (i, j) ∈ A,
on which we define the minimum s, t-cut problem and show that solving it provides
the optimal solution to our CA problem.

4 Main theorem

Let a cut be a partition (S,T ) of V of capacity C(S,T ) = ∑(i, j)∈A,i∈S j∈T ui j.

Theorem 2. The source set of the minimum cut in the graph Gst is the optimal region
for problem CA.

Proof. Let (S∪{s},T ∪{t}) be a partition of V ∪{s, t} and thus an s, t-cut in G. We
compute this cut’s capacity:



8 Dorit S. Hochbaum

C(S∪{s},T ∪{t}) = |B∩S|+ |D̄∗∩S|α + |D∗∩T |β +∑(i, j)∈A,i∈S j∈T 1
= |B∩S|+ |D̄∗∩S|α +(|D∗|− |D∗∩S|)β +C(S,T )
= |D∗|β + |B∩S|+C(S,T )+ |D̄∗∩S|α−|D∗∩S|β .

Now the first term is a constant |D∗|β . Thus minimizing C(S∪{s},T ∪{t}) is equiv-
alent to minimizing |B∩S|+C(S,T )+ |D̄∗∩S|α−|D∗∩S|β , which is the objective
of the CA problem.

We conclude that solving the concentrated alert problem reduces to finding the
minimum s, t cut in the graph Gst . The region we are seeking will then correspond
to the source set S of the minimum cut (S∪{s},T ∪{t}).

5 The weighted version of the alert concentration problem

The information provided by the detector may be too ambiguous to translate to a
simple binary statement of the form of alert or no-alert. Instead, one defines a
threshold level, and within the above-threshold alert category, one creates a function
that maps the alert profile transmitted from location i to a weight value pi that is
monotone increasing with the increased confidence in the significance of the alert
information.

Similarly, the below-threshold category of no-alert maps into a weight value qi
that is monotone increasing with the increased confidence in the significance of the
no-alert information. The modified weighted concentrated alert problem is then to
find a sub-region S, optimizing the function

(WCA) minS⊆V C(S, S̄)+ |B∩S|+α ∑i∈D̄∗∩S qi−β ∑i∈D∗∩S pi.

In order to solve this weighted problem we modify the assignments of capacities
to the arcs in the graph Gst as follows:
For each position i in D∗ we let the capacity of the arc from the source to i be,
usi = β pi, and for each position i in D̄∗ we let the capacity of the arc from i to the
sink be, uit = αqi. We call the graph with these modified arc capacities GW

st . We
claim that a weighted version of Theorem 2 applies:

Theorem 3. The source set of the minimum cut in the graph GW
st is the optimal

region for problem WCA.

Proof. The proof is a simple generalization of Theorem 2. We include it here for
the sake of completeness.

Let (S∪{s},T ∪{t}) be, as before, an s, t-cut in G, of capacity:

C(S∪{s},T ∪{t}) = |B∩S|+α ∑i∈D̄∗∩S qi +βα ∑ j∈D∗∩T p j +∑(i, j)∈A,i∈S j∈T 1
= |B∩S|+α ∑ j∈D̄∗∩S qi +β (∑i∈V pi−∑ j∈D∗∩S p j)+C(S,T )
= β ∑i∈V pi + |B∩S|+C(S,T )+α ∑i∈D̄∗∩S qi−β ∑ j∈D̄∗∩S p j.
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Since β ∑i∈V pi is a constant, the source set of the minimum cut is also minimizing
|B∩S|+C(S,T )+α ∑i∈D̄∗∩S qi−β ∑ j∈D̄∗∩S p j.

6 Solving for all values of the parameters

As the value of β is changing the solution changes as well. Instead of solving for
each value of β we note that the source adjacent arcs are monotone increasing in
β and the sink adjacent arcs’s capacities are unaffected. Therefore this is a scenario
of the parametric maximum flow minimum cut problem. The complexity of solving
such a problem is the same as the complexity of solving for a single minimum s, t
cut [4] with the push-relabel algorithm. We plan to use the parametric pseudoflow
algorithm, [6], that also solves the problem in the same complexity as a single cut.
The source code of the solver we use is available at [1].

Since we can find the solution for all values of β , this leads to finding the optimal
solution to the respective ratio problem which corresponds to the largest value of β
where the solution value is still ≤ 0.

It is possible to conduct the sensitivity on the parameter α independently from
that on β . In other words, we keep β fixed and then study the effect on the solution
of solving for all possible values of α .

7 Numerical examples

Several instances of the problem were devised on a grid. In the figures below a full
circle represents a detector position reporting alert and a crossed circle represents
a detector position reporting no-alert. The length of the boundary was taken to be
its rectilinear length. That is, the 4-neighbor adjacency was selected. The problem
instances were run for β = 3.99 and α = 0.5β . The reason why the value of β is
just under 4 is to prevent the generation of regions consisting of singletons of alert
positions.

In Figure 7 the set V is a 7× 10 grid. The set of three alert positions forms
the optimal solution. The optimal region is indicated by darker shade. Notice that
in this example there are, on row 10, two alert positions separated by an empty
position. Although these might indicate an elevated alert status for that area, the
vacant grid position rules out selecting this set. The presence of vacant positions
therefore should not necessarily be interpreted as diminishing the alert level. These
are only the result of a random distribution of the positions.

To allow for regions to be generated even if they contain alert positions separated
by a small number of empty grid points, we assign a small value of β , denoted by
γ , to each vacant grid point. That means that every vacant position is interpreted
as a “minor” alert position and the objective function has an extra term −γ|V \D|.
The modification in the graph of Figure 1 is to add arcs from source s to every
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Fig. 2 The solution for a 7×10 grid.

unoccupied square in the grid with capacity γ each. Theorem 2 is easily extended
for this case. In the next set of examples we set γ = 0.021.

Fig. 3 The effect of introducing γ values to vacant grid positions.

As we see in Figure 3(a), the addition of the γ coefficient indeed changes the op-
timal solution, and now we have two alert regions, one of which contains an empty
position. However, if the two regions are “close”, and in the given configuration they
are 3 rows apart, as shown in Figure 3(b), then the two regions merge into one. In
Figure 3(c) one sees that adding one no-alert position within the region has the effect
of separating the two regions. The determination of which values to set and when
regions should be consolidated is to be determined by nuclear detection experts and
the geographical parameters of the region, as well as the density of the detectors’
distribution in the region.
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8 Conclusions

We present here a formulation and an efficient algorithm solving the alert concentra-
tion problem. The approach presented allows to focus resources on real threats and
reduce the likelihood of false-positive and false-negative alerts. We believe that each
practical setting should be characterized by the density of the the vehicles carrying
detectors, by the sensitivity of the detectors – in terms of distance from a source –
and by the finesse of the grid. Each setting requires different values of the parame-
ters β , γ and α . The plan for follow up research is to have these values fine-tuned
by simulating the application of the procedure on simulated data. This will be done
by considering the resulting size of the region generated and how it corresponds to
the detectors’ range.
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