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Abstract The ability to track illicit radioactive source in an urban environment is critical in
national security applications. To this end, two modes of operation are common: positioning
individual portal monitors, and deploying a network of distributed sensors. We address here
the use of multiple detectors, mounted on moving vehicles, for the purpose of detecting nu-
clear threats. An example scenario is that of multiple taxi cabs each carrying a detector. The
detectors’ positions are known in real-time as these are continuously reported from GPS
data. The level of detected risk is then reported from each detector at each position. The
problem is to delineate the presence of a potentially dangerous source and its approximate
location by identifying a small area that has an elevated concentration of reported risk. This
problem of using spatially deployed mobile detector networks to identify and locate risks
is modeled and formulated here. The problem is shown to be solvable in polynomial time
and with a combinatorial network flow algorithm. The efficiency of the algorithm enable its
use in real time, and in areas containing a large number of deployed detectors. A simulation
study, that takes into account false-positive and false-negatives reports from individual sen-
sors, demonstrates the effectiveness of the algorithm in using the sensor network’s detection
capabilities.

Keywords Nuclear threat detection · Network flow · Parametric cut · Counter-terrorism ·
Discrete event simulation

1 Introduction

When considering the risks to our vulnerable populations posed by potential terrorism, the
nuclear threat is never far from center stage. Although weapons-grade nuclear materials
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are heavily guarded, a rather plausible scenario involves the detonation of a very simple
Radiological Dispersion Device (RDD) which is capable of broadcasting non-fissile but
highly radioactive particles over a densely populated area. In most cases, such a device and
its payload must be transported to a target destination. Detection and intervention is the final
defense in such a situation.

Detecting nuclear threats is a challenging problem under any circumstances. Distrib-
uted Sensor Networks (DSN) are frequently considered in support of this goal (Brennan
et al. 2004, 2005; Cunningham 1995; Nemzek et al. 2004; Stephens and Peurrung 2004).
Nemzek et al. examine the signal-to-noise behavior that arises in the simple combination
of data from networked radiation sensors and conclude that, for real-life scenarios, the in-
dividual portal monitors may be equivalent to, or better than, networked sensors. Brennan
et al. (2004, 2005) exploit Bayesian methods for radiation detection with distributed sensor
networks. Bayesian methods for RDD parameter estimation exhibit a computational com-
plexity exponential in the number of parameters estimated (Nemzek et al. 2004), limiting
their implementability and fostering concerns that their specialization for detection might
also be too computationally intensive to ever be useful (Brennan et al. 2005). Additionally,
the methods presented in the above publications are based on stationary fixed sensors and
apply strict constrains on the RDD’s velocity and on the environmental conditions. Natu-
rally, this makes them impractical for use in real-life scenarios. Moreover, these methods do
not directly lead to improved performance in terms of detection efficiency and reduction in
false detection rate (Stephens and Peurrung 2004).

With recent technology it has become operational and cost-effective for DSN to be
mounted on vehicles in public service. Sodium Iodide detectors are currently deployed on
vehicles such as police cars, fire trucks, trains, buses or even taxi cabs. Thus, creating mobile
sensor networks, in which, both the RDD and the sensors may be in motion. The position of
each detector is known at any point in time from GPS information transmitted to a central
control data processing facility. This makes the detection task even more challenging when
the relative positions of the detector and the RDD, if exists, are unknown. The sensitivity
of the detectors is diminishing with distance from the RDD, thus their geographic position
impacts the reliability of their reporting. Further, a detector may fail to detect correctly an
existing threat (false-negative), or report an alert on the existence of a RDD when there is
none (false-positive). The likelihood of false reports is diminished and their effect is miti-
gated when relying on reports from several independent sensors.

We are interested in delivering a decision support system that will delineate a region of
elevated risk of the existence of nuclear threat that requires taking further means. These
means might involve deploying a task team and possibly isolating the region. Due to the
expense and disruption of such means, the decision support system should be highly robust
and reliable.

A polynomial time algorithm, for delineating the presence of a potentially dangerous
RDD and its approximate location, using mobile sensor networks, has been presented by
Hochbaum in the proceedings of the 11th INFORMS Computing Society (ICS) Conference.
The suggested algorithm addresses the threat detection as the concentrated alert problem,
combining two goals: One goal is to identify a small region; another goal is to have large
number of alerts, or high concentration of alerts in the region. These two goals are potentially
conflicting—focusing on a large number of alerts within an area is likely to result in the
entire region; on the other hand focusing on concentration alone would result in a single
block of the area containing the highest level of reported alert, thus disregarding information
provided by other detectors in the adjacent area. The model is then to identify, at every period
of time, a region which relatively to its size has high concentration of alerts. The two goals
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are balanced by an appropriate selection of weights. The algorithm, presented in Hochbaum
(2009) is referred to as CA (Concentrated Alert) algorithm.

In this paper we extend the discussion in Hochbaum (2009). The results here constitute
a significant extension in implementing the algorithm and running simulation results. This
is achieved through providing a discussion of false alarm probabilities as a function of the
number of detectors per block; by presenting a simulation software and by suggesting meth-
ods of aggregating the results of the optimization algorithm over time. The latter allows for
a more accurate and robust detection.

The simulation software, presented here, takes into account the nuclear shielding effects
in a densely built urban environment. The simulation allows to evaluate the fundamental
limitations of distributed multi-sensor network and its ability to cope with a subset of faulty
sensors. The simulation provides evidence as to the quality of the performance of the algo-
rithm in correctly identifying danger zones, or mobile RDDs if exist.

The rest of the paper is organized as follows: Sect. 2 provides the formalism for describ-
ing the CA and shows how the problem is solvable in polynomial time as a minimum s, t -cut
problem on an associated graph. Section 3 provides the theoretical analysis of the probability
for misdetection as a function of the density of randomly distributed set of sensors. Section 4
describes the various aspects of the simulation software, and Sects. 5 and 6 present the deci-
sion support system that aggregates the CA algorithm’s output over time. Section 7 details
how the algorithm handles mobile RDD. The conclusions are given in Sect. 8.

2 Solving the concentrated alert problem

2.1 Notation

We introduce here graph theoretic notation to be used in formulating the problem. Without
loss of generality, the region where the detectors are deployed, is assumed to be a rectangular
area subdivided in grid squares. These will be small enough to contain geographical area
which can be effectively contained in a case of threat detection, a single street block for
example. Let V be the collection of positions (blocks) in the area considered.

We construct a directed graph G with the set of nodes V corresponding to the set of grid
blocks. As each grid point corresponds to a geographical area, we define adjacent grid points
whose corresponding areas share a boundary. For each pair of adjacent blocks, i and j , we
add a pair of directed arcs, (i, j) and (j, i), each with capacity 1. These arcs are referred to
as the “adjacency” arcs of G, and denoted by Aa . We denote in general the capacity of an
arc (i, j) by uij . Let S ⊂ V be the set of blocks of a selected sub-region. For each adjacent
pair of grid points, if one is within the region S and the other outside, the added length to
the boundary, the perimeter of S, is 1.

We measure the size of the area delineated by S, by the length of its boundary, counted
as the number of grid block sides that separate S from S̄ for S̄ = V \ S. The length of the
boundary of a subset of grid points S is then

∑
i∈S,j∈S̄,(i,j)∈Aa

uij = ∑
i∈S,j∈S̄,(i,j)∈Aa

1, since

the set Aa contains arcs of capacity uij = 1. This length is equal to C(S, S̄) = |{[i, j ]|i ∈
S, j ∈ S̄}|. Note that there is no requirement that the set S is contiguous. It can be formed of
several components, each disconnected from the rest.

Let Gst be a graph (Vst ,Ast ), where Vst = V ∪ {s, t} and Ast = A ∪ As ∪ At in which
As and At are the source-adjacent and sink-adjacent arcs respectively. A flow vector f =
{fij }(i,j)∈Ast is said to be feasible if it satisfies:
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1. Flow balance constraints: for each j ∈ V ,
∑

(i,j)∈Ast
fij = ∑

(j,k)∈Ast
fjk (i.e., inflow(j)

= outflow(j))
2. Capacity constraints: the flow value is between the lower bound and upper bound capac-

ity of the arc, i.e., 0 ≤ fij ≤ uij

A maximum flow is a feasible flow, f ∗, that maximizes the flow out of the source (or into
the sink), called the value of the flow. The value of the maximum flow is

∑
(s,i)∈As

f ∗
si . An

s, t cut in Gst (or cut for short) is a partition of Vst to (S ∪ {s}, T ∪ {t}). The capacity of the
cut is C(S ∪ {s}, T ∪ {t}). The minimum s, t cut is the cut of minimum capacity, referred to
here as min-cut. It is well known (Ford and Fulkerson 1956) that the maximum value of the
flow is equal to the capacity of the min-cut.

2.2 Formulating the objective function

Since our objective involves multiple goals, we address these by setting a trade-off between
the importance of the short boundary versus the high concentration of alerts. One way of
trading these off is by minimizing a ratio function—of the length of the boundary divided
by the concentration of alerts in the region. Another, used here, is to optimize a weighted
combination of the goals.

To formalize the goal of “small area” we define an area to be of small size if it is enclosed
by a “short” boundary. The boundary of an area is then the number of edges that separate in-
region from out-region, or the rectilinear length of the boundary. In the graph G = (V ,Aa)

the length of the boundary of a set S ⊂ V is C(S, S̄). Prior to proceeding, we note that this
definition of length needs certain tweaking. Let the set of boundary blocks of the entire area
considered be denoted by B . With the definition of the set of arcs Aa , the selection of any
subset of B reduces the defined size of the region. For example, if the selected region is all
of V then the length of the circumference C(V,∅) is equal to 0. To prevent that, we add a set
of arcs AB from the boundary nodes to an imaginary point in space. This will be quantified
in a manner explained later. We let the corner grid blocks contribute 2 to the length of the
boundary, if included in the set. The length of the boundary is thus C(S, S̄)+ |B ∩ S| where
we count the corner blocks twice in B (instead of introducing additional notation).

Next we formalized the goal of identifying high concentration of alerts. One indication of
the level of alert in an area is the number of alerts at higher than threshold level within this
area. In general, each alert could be accompanied by a weight, specifying the confidence
with which the alert is sounded. We first consider a “binary” alert scenario, where these
weights are either 0 or 1 for all alerts. Then we consider general weights to accommodate
varying levels of alerts. Let D ⊆ V be the set of positions occupied by vehicles. Let D∗ ⊆ D

be the set of positions reporting alerts. Part of our objective is then to identify a subregion
of positions containing S so that |D∗ ∩ S| is maximized.

Following the discussion above, the linearized objective of the concentrated alert (CA)
problem is the linear combination of the two objectives, using α and β as a weight for the
relative importance of the weights:

(CA) min
S⊆V

{C(S, S̄) + |B ∩ S| − β|D∗ ∩ S| + α|D̄∗ ∩ S|} (1)

Maximizing the number of alerts within the selected region is an objective that has some
pitfalls. For instance, if the region considered, S, contains, in addition to the alerts, also a
relatively high number of no-alerts D̄∗ ∩ S, for D̄∗ = D \ D∗, then this should diminish the
significance of the alerts in the region. Therefore, we add yet another minimization objective,
min |D̄∗ ∩ S|. This objective is then combined with the length of the boundary objective, as
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min{C(S, S̄) + |B ∩ S| + α|D̄∗ ∩ S|} Although, in terms of the model, we do not restrict the
value of α, it is reasonable that α should be a small value compared to the contribution of
alert positions, as discussed below. If we choose to disregard the number of no-alerts in the
region, then this is captured by setting α = 0.

A potential problem with this formulation is ignoring the positions that contain no detec-
tors. It is possible that two non-adjacent regions are identified as high risk regions. In this
case, the area between those two regions may also contain threat, but get no indication as
such since there is no detector there. An example illustrating this is presented, for specific
choices of α and β , in Sect. 3.1 and Fig. 2. To address this, we assign a value, denoted by γ ,
to each vacant grid point, where γ is much smaller than β . The affect of assigning values to
vacant positions is also shown in Sect. 3.1 and Fig. 2. Depending on users’ considerations,
γ can always be set to 0.

Incorporating the use of the weight γ for vacant positions, the objective of the CA prob-
lem becomes:

(CA) min
S⊆V

{C(S, S̄) + |B ∩ S| − β|D∗ ∩ S| + α|D̄∗ ∩ S| − γ |S \ D|} (2)

2.3 The weighted version of the concentrated alert problem

The information captured by a detector is a spectrum of gamma ray emissions recording
the frequency at each energy level. As such this is not scalar-valued information which may
be too ambiguous to translate to a simple binary statement of the form of alert or no-alert.
The analysis of the detected energies spectrum therefore presents a challenge. The analysis
process is currently under development using advanced data mining techniques (by e.g.
the DONUTS research group at UC Berkeley (2009). Therefore, one can refine the binary
alert levels to continuous levels, or to a collection of discrete levels. We use here the latter
and define a threshold level, beyond which there are several alert categories and below it,
several no-alert categories. The alert profile, if above threshold, transmitted from a detector
in position i is mapped to a weight value pi that is monotone increasing with the increased
confidence in the significance of the alert information. If the alert profile is under threshold
that it is mapped to qi which increases monotonically with the confidence in the no-alert
reporting.

The modified weighted concentrated alert problem is then to find a sub-region S, opti-
mizing the function,

(WCA) min
S⊆V

C(S, S̄) + |B ∩ S| + α
∑

i∈D̄∗∩S

qi − β
∑

i∈D∗∩S

pi − γ |S \ D| (3)

2.4 Constructing the graph

Let the grid points be represented by a collection of nodes V of a directed graph G = (V ,A),
where each point is represented by a node. The set of nodes is appended by a source dummy
node s and sink dummy node t .

The definition of the adjacency arcs, Aa , as given in Sect. 2.1, allows the adjacency to be
of any form. To this end both 4-neighbors adjacency or 8-neighbors adjacency can be used.
The perimeter’s length depends the definition of the neighborhood. In our illustrations and
experiments we used 4-neighborhood. If 8-neighborhood is used the perimeter’s length is
then roughly 3 times longer and α and β values should be changed accordingly to get the
same output.
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Fig. 1 The weighted graph GW
st

We connect the set of arcs AB , representing the boundary of the monitored region, to the
sink t with capacities of 1. For corner blocks, we add an arc to the sink node with capacity 2.
Each position i that contains an alert in D∗ is set to be adjacent to s with a directed arc of
capacity βpi . Each position i that contains no-alert, in D̄∗, is set to be adjacent to t with a
directed arc of capacity αqi . We denote these sets of arcs by Aβ and Aα respectively.

We therefore constructed a directed s, t graph Gst = (Vst ,A), where Vst = V ∪ {s, t} and
A = Aa ∪AB ∪Aβ ∪Aα . The construction of the graph is illustrated in Fig. 1 where an alert
position is indicated by a solid circle, and a no-alert position by a crossed circle.

We now have a graph G = (V ∪ {s, t},A) with arc capacities uij for arc (i, j) ∈ A, on
which we define the minimum s, t -cut problem and show that solving it provides the optimal
solution to our WCA problem.

Theorem 1 (Hochbaum 2009) The source set of the minimum cut in the graph GW
st is the

optimal region for problem WCA.

Proof The full proof and its derivation from the unweighted concentrated alert problem is
given in Hochbaum (2009). We include the proof for the weighted case here, for the sake of
completeness. Let (S ∪ {s}, T ∪ {t}) be an s, t -cut in GW

st , of capacity:

C(S ∪ {s}, T ∪ {t})
= |B ∩ S| + α

∑

i∈D̄∗∩S

qi + β
∑

j∈D∗∩T

pj + γ |T \ D| +
∑

(i,j)∈A,i∈Sj∈T

1

= |B ∩ S| + α
∑

i∈D̄∗∩S

qi + β

(∑

i∈V

pi −
∑

j∈D∗∩S

pj

)

+ γ (|V \ D| − |S \ D|) + C(S,T )

= β
∑

i∈V

pi + γ |V \ D| + |B ∩ S| + C(S,T ) + α
∑

i∈D̄∗∩S

qi − β
∑

j∈D∗∩S

pj − γ |S \ D|
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Since β
∑

i∈V pi + γ |V \ D| is a constant, the source set of the minimum cut is also mini-
mizing |B ∩ S| + C(S,T ) + α

∑
i∈D̄∗∩S qi − β

∑
j∈D∗∩S pj − γ |S \ D|.

We conclude that solving the concentrated alert problem reduces to finding the minimum
s, t cut in the graph GW

st . The region we are seeking will then correspond to the source set S

of the minimum cut (S ∪ {s}, T ∪ {t}). �

For finding the minimum s, t cut in GW
st we use the parametric pseudoflow algorithm,

(Hochbaum 2008). The source code of the solver we use is available at Chandran and
Hochbaum (2009).

3 Error analysis

Any metric for judging the performance of a network of sensors will ultimately reduce to
two fundamental parameters. The first of these parameters is the probability that a particu-
lar RDD will indeed be detected by the sensor network. This parameter is often called the
detection efficiency, and is the complement of the false negative probability. The second of
these parameters is the probability per unit time that a sensor network will incorrectly iden-
tify the presence of a RDD that is not actually present. In the interests of clarity this paper
will refer to this parameter as the false positive probability and quantify it as a probability
per measurement interval. Ideally, the detection probability will be high and the false de-
tection probability will be very low. This ensures confident detection of real targets while
minimizing the resources consumed responding to false detection events. It should be noted
that both parameters are intimately related in that for a specified scenario (transit time, back-
ground count rate, RDD strength, etc.) they can both be derived from the selected detection
threshold.

3.1 Algorithm’s parameters

To illustrate the considerations in choosing the values of the parameters α, β and γ , we
consider first the simpler, binary, case where each sensor can report either an alert or no-
alert. The computed region of elevated risk, S, is computed through minimizing Eq. 2, where
β = 3.99, α = β/2 and γ = 0.021. The reason why the value of β is just under 4 is to prevent
the generation of regions consisting of singletons of alert positions.

In Fig. 2(a) the set V is a 7 × 10 grid. The set of three alert positions forms the optimal
solution. The optimal region is indicated by darker shade. Notice that in this example there

Fig. 2 The effect of introducing γ values to vacant grid positions
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are, on row 10, two alert positions separated by an empty position. Although these might
indicate an elevated alert status for that area, the vacant grid position rules out selecting
this set. The presence of vacant positions therefore should not necessarily be interpreted as
diminishing the alert level. As we see in Fig. 2(b), the addition of the γ coefficient indeed
changes the optimal solution, and now we have two alert regions, one of which contains an
empty position. However, if the two regions are “close”, and in the given configuration they
are 3 rows apart, as shown in Fig. 2(c), then the two regions merge into one. In Fig. 2(d) one
sees that adding one no-alert position within the region has the effect of separating the two
regions. The determination of which values to set and when regions should be consolidated
is to be determined by nuclear detection experts and the geographical parameters of the
region, as well as the density of the detectors’ distribution in the region.

The following considerations should be taken into account when setting values for β:
β reflects the alerts’ concentrations, the ratio between the region’s size (represented by its
circumference) and the sum of weighted alerts reported within it. The values of β are asso-
ciated with the way the weights pi are set. Suppose we let pi = 1 correspond to a definite
threat, any value of β > 4 results in regions consisting of singletons of alert positions. Def-
inite threat refers to a situation where the presence of a nuclear threat is undoubted. For
example, when high gamma and neutron radiation levels are measured in the same position.
In those cases it is up to system designer to determine whether to generate an alarm based
upon a single, possibly faulty, report. In the next set of examples we set β = 4.01. In this
way, every singleton report with a weight higher than 0.998 generates an alarm. There are
two cases in which pi > 0.998: (i) when a sensor has detected a serious threat, or (ii) one
of the sensors is faulty. This choice of parameter ensures that any serious threat reported by
a single detector with pi > 0.998, results in alarm. With that, if the region that contains the
sensor reporting a definite-threat, happens to contain other sensors reporting all-clear, the
algorithm uses this information to diminish the impact of the faulty sensor report.

3.2 False positives probability

In the remainder of this section, the following notations are used:

1. K is the total number of sensors (K = |D|).
2. kS ≤ K is the number of sensors occupy an arbitrary region S ⊆ V , hence kS = |D ∩ S|.
3. Each sensor can be assigned with three levels of alerts: Definite Threat, DT , corresponds

to pi = 1; Possible Threat, PT , corresponds to pi = 0.995; and All Clear, AC, where
qi = 1.

4. kDT
S , kPT

S and kAC
S are the number of sensors within S that are reporting definite alert,

possible alert and all-clear respectively. Note that kDT
S + kPT

S + kAC
S = kS .

5. PS is the a-priory probability that a sensor occupies S. In the following discussion the
sensors’ positions are uniformly distributed, thus PS = |S|/|V |.

6. P (DT |AC), P (PT |AC) and P (AC|AC) are the probabilities of a single detector re-
porting definite alert, possible alert and all-clear, conditioned on an all-clear event.
Those probabilities are derived from the detector’s design parameters such as energy
resolution, geometrical characteristics and counting interval (Attix 1986).

Evaluating Eq. 3, S, computed by the algorithm, is not an empty set only if:

|B ∩ S| + C(S,T ) + α
∑

i∈D̄∗∩S

qi − β
∑

j∈D∗∩S

pj − γ · |S \ D| < 0 (4)
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Using the above notions and noting that |B ∩S|+C(S,T ) = circumference(S), we con-
clude that S 
= ∅, hence an alarm is generated, if:

β · kDT + 0.995 · β · kPT + γ · (|S| − k) − α · kAC − circumference(S) > 0 (5)

Let us now define δ(S, kDT
S , kPT

S , kAC
S ), as:

δ(S, kDT
S , kPT

S , kAC
S )

=
{

1 if (β · kDT + 0.995 · β · kPT + γ · (|S| − k) − α · kAC − circumference(S) > 0)

0 otherwise

The probability of an alert in S, given that kS sensors occupy S, is then given by:

P (Alert|kS) =
kS∑

kDT
S

=0

kS−kDT
S∑

kPT
S

=0

kS−kDT
S

−kPT
S∑

kAC
S

=0

{
kS !

kDT
S !kPT

S !kAC
S ! · δ(S, kDT

S , kPT
S , kAC

S )

· P (DT |AC)kDT
S · P (PT |AC)kPT

S · P (AC|AC)kAC
S

}

(6)

Then, given, that P (kS |K) is the probability that kS sensors occupy S, given by:

P (kS |K) = K!
kS !(K − kS)! · (PS)

k · (1 − PS)
(K−kS ) (7)

The probability of false positive is:

PFalse-Positive =
K∑

kS=0

P (kS |K) · P (Alert|kS) (8)

Figure 3 presents the probability of false detection in a single grid point as a function
of sensors’ concentration, thus the average number of sensors, per grid point. The prob-
ability of error is computed for an increasing number of sensors on a fixed size area for
three sets of detectors. The first set of detectors is characterized by P (DT |AC) = 2% and
P (PT |AC) = 8% (solid line); the second set is characterized by P (DT |AC) = 4% and
P (PT |AC) = 16% (dashed line), while the third set’s parameters are P (DT |AC) = 8%
and P (PT |AC) = 32% (dash-dot line). For low concentrations, the chance of a sensor ac-
tually being in the block in question is small, and therefore no alarm is reported and no false
detection occurs. With that, low concentration values, generates high probability of false
negatives. This is addressed in Sect. 3.3. When the number of sensors increases, the prob-
ability of error increases, till there is enough sensors that other detectors in the same block
can conceal the faulty reports. As one can see, for the three sets of sensors, for a certain
concentration rate, the derivatives of the probability functions decreases to 0. Meaning that
the number of sensor has reached a saturation. The minimum asymptotic error, though, is
higher for the second and third sets of sensors, which presents worse detection capabilities.
Thus, when the sensor network reaches to a saturation state, the quality of detection can be
improved by using a better set of sensors.
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Fig. 3 Probability of false positive vs. the number of sensors per block

Fig. 4 Probability of false negative vs. the number of sensors per block

3.3 False negatives probability

Similarly to the derivation of Eq. 8, the probability of a false negative is given by:

PFalse-Negative =
K∑

k=0

P (k|K) · P (No-Alert|k) (9)

where P (k|K) is given by Eq. 7 and P (No-Alert|k) is given by Eq. 6, for all {kDT , kPT , kAC}
triplets such that:

β · kDT + 0.995 · β · kPT + γ · (|S| − k) − α · kAC < circumference(S) (10)

Figure 4 depicts the probability of a false negative in a single grid point region, for dif-
ferent sensor concentration rates, for three sets of detectors. The first set (solid line) is char-
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Fig. 5 Detectors’ receiver operating characteristic (ROC)

acterized by P (AC|DT ) = 2% and P (PT |DT ) = 8%, the second set (dotted line) char-
acteristics are P (AC|DT ) = 4% and P (PT |DT ) = 16% and the last set’s characteristics
(dash-dot line) are P (AC|DT ) = 8% and P (PT |DT ) = 32%. As expected, for the three
sets of sensors, low sensor concentrations rates result in high probability of false negative.
When the concentration increases, the error decreases rapidly.

The Receiver Operating Characteristic (ROC) curves are often used to present the detec-
tion system’s performance. The ROC curve expresses the inspection system’s detection rate
as a function of the rate of false positives (Fawcett 2006). The corresponding ROC curves
of the three detectors are presented in Fig. 5.

3.4 Practical considerations

The decision, whether to generate a system alarm, for a particular risk, is executed by the
system once per predefined ‘processing period’. In order to come up with a decision, the
system integrates all measurements received during this period. To this end, it is possible
that, throughout the processing period, the same sensor reports from two different locations,
or two different sensors report from the exact same location.

The results in Sects. 3.2 and 3.3 show that a density of 10 sensors per grid point per
processing period saturates the system, meaning that adding sensors beyond 10 will not im-
prove the system’s performance significantly. Deploying the detectors on taxis in densely
populated urban environments, such as Manhattan NYC, will provide sufficient sensors’
density, (Schaller 2006). For less populated areas, one can aggregate the sensors’ readings
over time till a sufficient number of measurements is reached. This solution is somehow
less effective when the RDD is mobile, or when we would have a high correlation in the
false positive/false negative readings. An example for such scenario is a taxi having a mal-
functioning detector. This could undermine the usefulness of the aggregation over time and
might require an operator’s intervention.

The monitored area (V ) might consist of areas with varying taxis’ (detectors’) density.
One way to address this is to use readings over different time windows for each region. For
highly populated area the algorithm regards only readings that have been acquired during
the last processing period, whereas for less populated areas, measurements from a temporal
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window of several processing rounds are used. For example, if an area requires on average
3 periods in order to reach sufficient density, then the readings processed by the algorithm
in period t will be the accumulated readings over t − 2, t − 1 and t. In general, for n time
periods’ window the readings, for t, is the accumulated samples over t − (n − 1), t − (n −
2), . . . , t . The value of n is preset for each grid block, or may be adaptively adjusted on-
line—for each grid block wait until a sufficient number of readings have been acquired.

4 Simulation software

Our simulation models the detection of the presence or the transport of radioactive RDD’s
in an urban environment by means of mobile sensor networks mounted on public service ve-
hicles, e.g. taxis. The simulation software is using, as subroutine, the pseudoflow algorithm,
described in Hochbaum (2008), and its implementation software available at Chandran and
Hochbaum (2009). The simulation was written under the following assumptions:

1. The RDD can be moving or stationary.
2. The speed of each moving object, thus the sensors and the RDD, in the case it is

being transported, is randomly, uniformly distributed, set to be between 11 and 45
[Miles/Hour]. Meaning that each object, a sensor or the RDD, may have different speeds
than the other moving objects.

3. When a vehicle approaches an intersection it may turn left, turn right or keep its original
direction with equal chance.

4. The RDD’s energy corresponds to the specific RDD used and is 0.662 [MeV], for
Cesium-137, and 1.1173 or 1.332 [MeV] for Cobalt-60.

5. Background radiation was taken to have a (relatively high) expected value of 30
[µRad/Hour], with normal distribution and standard deviation of 15 [µRad/Hour]. In
practice the background radiation level can be measured beforehand and can have dif-
ferent values in different places on the map.

6. Data were collected for consecutive time intervals, each of 1 [s] duration.
7. The x-coordinate is the North-South axis, and the y-coordinate is the East-West axis.

(For simplicity, the topographic elevation for all positions on the map, is assumed equal
to zero.)

8. The monitored area, V , was taken to be a rectangle area. Its size can be set by the user,
and can be 4 up to 225 street blocks.

9. Each street block’s width and length are 295 [feet].
10. Each street block is separated from its adjacent one by a two-way road with width of 33

[feet].
11. Sensors’ locations, as they are mounted on vehicles, are limited to roads only.

A map, generated by the simulation software is presented in Fig. 6. The map is segmented
by a grid of 3×7 into 21 blocks. The center of each block is represented by a node in GW

st . In
this example each node corresponds to a street intersection. This however is not necessarily
the case in general, and grid points can be present inside buildings. The monitored region,
V , is occupied with 17 sensors, mounted on vehicles (|D| = 17). In the simulation instance,
presented in Fig. 6, 4 sensors detect the presence of the RDD, |D∗| = 4. Other 13 sensors
report all clear, |D̄∗| = 13. The way the radiation detected by the sensor is computed, is
elaborated on in Sect. 4.1.
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Fig. 6 Simulated city map

4.1 Radiation field

In our considerations, we take the radioactive source to be a small quantity of Cesium-137
or Cobalt-60; these isotopes were chosen because their availability in industrial or medical
sources and in powdered form make them a potential element of a RDD (“dirty bomb”).

The sensor’s radioactivity measurements are based on the count of emitted particles from
the RDD. Therefore the Radiation Exposure Rate (RER), the number of particles counted
by a sensor, is inversely proportional to the square of the distance between the RDD and the
sensor:

RER(d) = �̂

d2
(11)

where �̂ is a RDD specific parameter (Unger and Trubey 1982) and d is the distance between
the radioactive source and the sensor.

In an ideal environment, the RER(d) defines the amount of radiation measured by a sensor
with distance d from the RDD. However, in an urban environment, there are additional two
factors that affect the radiation field. The first one is the radiation propagation medium being
inhomogeneous. The radiation attenuation rate depends on the RDD’s characteristics and the
propagation medium. For two types of media, air and concrete, the Radiation Attenuation
Rate (RAR) is given by:

RAR(dair, dconcrete) = exp{μair · |dair|} · exp{μconcrete · |dconcrete|} (12)

where μair and μconcrete are RDD and propagation mediums specific constants (Berger et al.
1998) and |dair| and |dconcrete| are the propagation distances in air and concrete respectively.
Note that dair + dconcrete = d .

The second factor, that affects the radiation is background radiation (BGR). Background
radiation is the ionizing radiation constantly present in the environment, emitted from a
variety of natural and artificial sources (UN Scientific Committee on Effects of Atomic Ra-
diation 2000) and usually is known for major metropolises.

Incorporating these two factors, the total radiation at a given location is given by:

Rad(dair, dconcrete) = RER(dair + dconcrete) · RAR(dair, dconcrete) + BGR (13)

Figure 7 depicts a simulated city map and its corresponding radiation maps for Cobalt-60
source, located in two different positions. Figures 7(b) and (c) are the radiation maps, pro-
duced by the simulation software, which correspond to the RDD’s locations (A) and (B),
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Fig. 7 Simulated city map and its corresponding radiation maps

marked on map (a). Figures 7(d) and (e) are cross sections (to the power of 0.1), going
through the RDD positions, of the radiation maps (b) and (c), respectively. It is evident that
a nuclear threat that is shielded inside a building is difficult to detect. On the other hand,
when the RDD is located in the open, which is the case when transported or moved, the
radiation measured range is significantly larger.

4.2 Simulation parameters

The simulation software, allows one to set the following simulation parameters:

1. Number of Street Blocks: Following the Manhattan model, we call pathways going from
east to west as ‘streets’, while pathways going from north to south are referred to as ‘av-
enues’. Both, the number of streets and avenues, can be set by the user, thus determining
the size of the area of interest.

2. Number of Simulation Steps: The number of consecutive time intervals, in which the
simulation is performed.

3. Number of Sensors: The number of sensors, hence the number of vehicles taking part in
the simulation.

4. Radioactive Source Type: The simulation allows to chose one out of two possible ra-
diation sources, which a RDD can consist of: Cesium-137 or Cobalt-60. Following the
radioactive source’s type selection, the radiation energy and consequentially the �̂(s), μair

and μconcrete parameters are set automatically by the simulation software.
5. Manual RDD Positioning: By default the simulation software places the RDD in a ran-

dom place on the map. In some cases, the user would like to position the RDD in a certain
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position on the grid, in order to evaluate specific behavior of the algorithm. One example
can be found in Sect. 4.1, where the RDD, in Fig. 7 is placed in the middle of a block,
and on a streets intersection. Other example can be peripheral vs. center location on the
map.

5 Aggregating the system’s output over time

The general goal of the system is to reach a decision as soon as sufficient amount of data
was collected so that the input is deemed reliable. The probabilities computed in Sects. 3.2
and 3.3 refer to the probability of reporting an error accumulating the measurements taken
in a specific region. The discussion concludes that encompassing more sensors’ readings
does not contribute the increased reliability of the input data once the number of readings
reaches saturation. Section 3.4 suggests aggregating samples over time until the number of
samples collected saturates the system and only then invoke the algorithm.

In this section, we suggest to extend the time integration over successive algorithm’s
outputs. This is achieved through applying moving average on the algorithm’s generated
output threat map.

The output of the algorithm, described in this paper, for each processing period is a binary
map, where for all i ⊂ D∗ the output is 1, and 0 otherwise. This mechanism fails to point
out for the user regions which have reported to contain threats more than the others. This
can be achieved by simply assigning each region with a grade proportional to the number of
times it was reported to contain a threat. For �t the number of processing periods, each is
region is assigned with the following grade:

G(i,t) =
t+�t∑

t̂=t

Output(i, t̂)

�t
(14)

Figures 8(a), (b) and (c) depict simulation’s outputs of three different times in one sim-
ulation run, where for each, respectively, the area found to contain risk, S, is incomplete.
With that, G(i,t), presented in Fig. 8(d), not only mark all contaminated areas as such, it
also indicates the severity of the threat for each of those regions and accurately detects the
RDD’s position. The darker the region, the higher the threat. In this simulation, we display
the position of the RDD. Note however, that in real-life application, it is not available to the
people in the central control room.

6 Interpolation

The algorithm’s output, when an actual threat is present, is an area of elevated risk. Once an
area has been determined to have elevated threat, we use interpolation to help pinpointing
the RDD’s location. The purpose of the interpolation procedure is to generate a continuous
function from the discrete signal/position collection of samples. We seek a function that
coincides with the value reported at each data point (sample’s position). Methods for gener-
ating this type of function are reviewed in Yaroslavsky et al. (2009). Of these methods we
select the iterative reconstruction procedure of the Papoulis (1975) type shown in the flow
diagram of Fig. 9.

One might think that the interpolation method can be used to replace the algorithm.
This is not true as the continuous interpolated function has the same values in the samples’
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Fig. 8 Three processing periods outputs (figures (a), (b) and (c)) and their corresponding Moving average
computation

Fig. 9 Flow diagram of the iterative signal recovery procedure
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Fig. 10 Radiation field interpolation

positions as the corresponding data points. This implies that false positives will perpetually
create multiple false peaks and alarms. This would lead to the same results as if we used the
raw data collected from the sensors and trigger an alert whenever a single sensor reports an
alert. Additionally the interpolation algorithm might be computationally complex. We cope
with these shortcomings of the interpolation method by computing it only after an alarm has
been generated by the algorithm, and using it to support followup actions.

Figure 10 shows the interpolation results. Figure 10(a) is the simulated map. Figure 10(b)
is the radiation field, as computed by Eq. 13. Figure 10(c) presents, by dots, the sampling
points taken over 750 consecutive processing periods with the interpolated radiation map.
Finally, Fig. 10(d) combines Figs. 10(b) and (c) by presenting the interpolated map level
lines on top of the computed radiation map. While it is not known in practice, the RDD’s
location is marked on each of the Figs. 10(a)–(d).

7 Mobile RDD

Sections 5 and 6 address the case of stationary RDD. In this section the contribution of the
methods, described in those sections, when the RDD is mobile is presented. As derived from
the discussion in the previous sections, the integration over time of the sensors’ measure-
ments when the RDD is stationary results in a better detection accuracy. When the RDD is
mobile the aggregation of the system’s output over time does not reveal the RDD’s exact
location. With that, the accumulated sensors data, over time, may be used for extracting the
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Fig. 11 Integration over time of the system’s output for mobile RDD

RDD’s trajectory. This is illustrated in Fig. 11. Figure 11(a) shows the RDD’s trajectory
from the upper-right section to the lower-left part of the map. Figure 11(b) depicts the in-
terpolated radiation map, while Figs. 11(c) and (d) present the moving average computed
at two different points in time. Figure 11(d) presents the moving average at a later time
than (c). It is evident, that the RDD’s positions and trajectory over time can be extracted
from Figs. 11(b)–(d). In real-life applications, the deduced trajectory may be used to pin-
point the target of the attack.

8 Conclusions

We present here a formulation and an efficient algorithm solving the concentrated alert prob-
lem at each given point in time. The efficiency of the algorithm permits to use it online
and aggregate the results over time. Statistical analysis of the approach presented, shows
that such use of the algorithm in a decision support system reduces the likelihood of false-
positive and false-negative alerts. The system’s performance is shown to be linked to the
density of the vehicles carrying detectors and with the detectors quality. Additionally, it
has been shown that aggregation of the algorithm’s output over time results in more robust
and accurate output. The plan for follow-up research is to exploit the presented capabili-
ties of the simulation software for fine-tuning of the scheme’s various parameters (α, β , γ

and �t ), for different setups. Eventually, the simulation software will be used for devel-
oping a real-life experiment, which will demonstrate the effectiveness of scheme presented
here.
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