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Abstract  Binary classification is a fundamental machine learning task defined as correctly assigning
new objects to one of two groups based on a set of training objects. Driven by the practical
importance of binary classification, numerous machine learning techniques have been
developed and refined over the last three decades. Among the most popular techniques are
artificial neural networks, decision trees, ensemble methods, logistic regression, and
support vector machines. We present here machine learning and pattern recognition
algorithms that, unlike the commonly used techniques, are based on combinatorial op-
timization and make use of information on pairwise relations between the objects of the
data set, whether training objects or not. These algorithms solve the respective problems
optimally and efficiently, in contrast to the primarily heuristic approaches currently used
for intractable problem models in pattern recognition and machine learning. The algo-
rithms described solve efficiently the classification problem as a network flow problem on
a graph. The technical tools used in the algorithm are the parametric cut procedure and
a process called sparse computation that computes only the pairwise similarities that are
“relevant.” Sparse computation enables the scalability of any algorithm that uses pairwise
similarities. We present evidence on the effectiveness of the approaches, measured in terms
of accuracy and running time, in pattern recognition, image segmentation, and general
data mining.

Keywords supervised machine learning « data mining « binary classification « parametric cut e
supervised normalized cut

1. Introduction

In a generic data mining or classification scenario, there are objects with associated feature
vectors that are to be classified, or clustered, such that in each group of objects in the same
cluster, all objects share some similarity or pattern. The dominant approaches for such
machine learning tasks fall most often in the realm of artificial intelligence rules or continuous
optimization of intractable problems. We present here combinatorial algorithms for machine
learning, data mining, and image segmentation that, unlike the majority of existing machine
learning methods, utilize pairwise similarities in addition to feature vectors. We provide
empirical evidence that the use of pairwise similarities enhances the quality of data mining and
classification and, at the same time, can be done efficiently while scaling well for very-large-
scale data sets.

The algorithms described solve efficiently the classification problem as a network flow
problem on a graph. The technical tools used in the algorithm are the parametric cut procedure
and a process called sparse computation that limits the computation of the similarities to only
those that are relevant. This is crucial, because the number of pairwise similarities grows at
a quadratic rate in the size of the data sets. Sparse computation is the process that enables the
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scalability of any algorithm that uses pairwise similarities. It is demonstrated empirically that
sparse computation enables the scalability of similarity-based algorithms to very-large-scale
data sets while maintaining high levels of accuracy.

The focus here is on a clustering model where a cluster is a group of objects that is as
dissimilar as possible from the complement while having as much similarity as possible within
the cluster. These two objectives are combined as either a ratio or with linear weights. This
problem is a variant of an intractable problem known as normalized cut, for which heuristic
methods are often used, primarily in image segmentation. The variant problem and the
polynomial time algorithm for solving it are called the Hochbaum’s normalized cut (HNC).

The combinatorial algorithm(s) described here form a unique paradigm for general data
mining and machine learning, in which there are training data in the form of labeled objects.
The optimization model and the algorithm under such a setup are referred to as the supervised
normalized cut (SNC). SNC is distinctly different from other machine learning algorithms, not
only in that it finds an optimal solution to a well-defined optimization problem but also in that
the relationships between the unlabeled objects are crucial to the determination of the clusters.
The standard approach of machine learning is to generate a mapping of feature vectors to
a classification that fits very well the training objects. This mapping is then applied to the
unlabeled objects to determine their classification. The mapping is therefore exclusively
based on the information provided by the training data yet ignores altogether any re-
lationships between unlabeled objects. Suppose there is a group of very similar unlabeled
objects so that different subsets in the group are close to differently classified labeled
objects. Most machine learning algorithms would split such a group and assign the various
subsets of objects to different labels. By contrast, SNC weighs the similarities between the
objects in the group, the intrasimilarity, versus their similarities to training objects, and
would assign the entire group with high intrasimilarity the same label. This similarity
between unlabeled objects is a useful source of additional information about the data and is
shown to contribute to the accuracy performance of machine learning methods. SNC and
related combinatorial algorithms for data mining as well as experimental results are de-
scribed in Section 6.

The collection of clustering models under HNC is more general than the type of model
suggested by normalized cut. It allows one to use two different sets of similarity weights, one
set to measure intracluster similarity and a second set to measure the intercluster similarity.
The first set quantifies the similarity within the cluster, and the second set quantifies the
dissimilarity between clusters. It also allows one to include, in addition to the similarity and
dissimilarity weights, object weights that can serve as a form of priors or likelihoods of be-
longing to specific classes.

The HNC criterion has been successfully applied in specific contexts. These include image
segmentation (Hochbaum et al. [21]), evaluation of drug effectiveness (Hochbaum et al. [20]),
video tracking (Fishbain et al. [13]), enhancement of the capabilities of low-resolution nuclear
detectors (Yang et al. [33]), and recently also for identification and tracking neurons in calcium
imaging movies (Spaen et al. [29]). In the work on enhancing the capabilities of plastic
scintillators (Yang et al. [23]), SNC was compared with several known data mining algorithms.
The major conclusions of this study were that SNC and Support Vector Machine (SVM) are
by far the most successful among the several machine learning methods in the comparison set,
in terms of accuracy, with SNC slightly more accurate than SVM and significantly faster than
SVM. The drug evaluation study in Hochbaum et al. [20] used a collection of machine learning
techniques containing methods previously used for the task of drug evaluation, with similar
conclusions: namely, SNC and SVM proved to be the leaders in terms of accuracy, where SNC
was substantially more efficient than SVM. For neuron identification in calcium imaging
movies, commonplace in neuroscience, the HNC criterion has been a top performer in the
Neurofinder benchmark and has provided superior performance compared with matrix fac-
torization techniques (see Spaen et al. [29]).
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1.1. About Image Segmentation and the Use of Similarities

Our use of similarities in clustering is motivated by image segmentation. Image segmentation
is fundamental in computer vision (Shapiro and Stockman [26]). It is used in numerous
applications, such as in medical imaging (Dhawan [10], Hosseini et al. [22], Pham et al. [24],
Roobottom et al. [25]), and it is also of independent interest in clustering (Coleman and
Andrews [8], Pappas [23], Shi and Malik [28], Tolliver and Miller [30], Wu and Leahy [31], Xing
and Jordan [32]). The image segmentation problem is to delineate, or segment, a salient feature
in an image. As such, this is a bipartition problem with the goal of separating the foreground
from the background (see Section 5 for illustrations). It is not obvious how to construct
a quantitative measure for optimizing the quality of a segmentation. The common belief is that
the normalized cut (NC) criterion (Shi and Malik [28]) is a good model for achieving high-
quality image segmentation.

The use of pairwise similarities between adjacent pixels is commonplace in image seg-
mentation. An image is formalized as an undirected weighted graph G =(V, E) where each
pixel in the image is represented as a node in the graph. A pair of pixels are said to be neighbors
if they are adjacent to each other. The common neighborhoods used in image segmentation are
the 4-neighbor and 8-neighbor relations. In the 4-neighbor relation, a pixel is a neighbor of the
two vertically adjacent pixels and two horizontally adjacent pixels. The 8-neighbor relation
adds also the four diagonally adjacent pixels. Every pair of adjacent neighbors i,5€ V is
associated with an edge [i,j] € E. Each edge [i,j] € E has a weight w;; > 0 representing the
similarity between pixel nodes i and j. It follows that the graphs representing images are very
sparse, of maximum node degree equal to 4 or 8, for the 4-neighbor or 8-neighbor relations,
respectively. This is the main reason why up until now the similarity-based algorithms have
been used in image segmentation yet scarcely used in machine learning in general. That is
because, for a general data set, without any specific information concerning the adjacency
structure, a complete graph has to be constructed. Such complete graphs become prohibitively
large even for moderately sized data sets.

It has long been observed that a minimum cut in a graph with edge similarity weights tends
to create a bipartition that has one side very small in size, containing a singleton in extreme
cases (Wu and Leahy [31]). This is so because the number of edges between a single node and
the rest of the graph tends to be much smaller than between two comparably sized sets. This
phenomenon is particularly notable in grid graphs such as the 4-neighbor image pixels graph
and in complete graphs, where the number of edges between two sets in a balanced partition is
an order of magnitude larger than the number of edges adjacent to a singleton. To correct for
such unbalanced bipartitions, Shi and Malik [28], in the context of image segmentation,
proposed the normalized cut as an alternative criterion to the minimum cut, where the value of
the cut is “normalized” by the size of the set or by the sum of similarities within the set. However,
Normalized Cut is an NP-hard problem and as such cannot be used even for practical-sized
images. Several heuristics and approximation algorithms have been employed for solving the
normalized cut problem [Dhillon et al. [11, 12], Shi and Malik [28], Tolliver and Miller
[30], Xing and Jordan [32]. The most frequently used method is the spectral method that finds
the Fiedler eigenvector (Shi and Malik [28]) and that provides a heuristic solution for the
normalized cut problem. Section 3 provides an evaluation of how the spectral method
compares to combinatorial relaxations of the normalized cut problem. It is shown that the
spectral method is a continuous relaxation of normalized cut, whereas a discrete relaxation
leads to combinatorial algorithms based on flow problems. Empirical evidence is provided in
Hochbaum et al. [21] that demonstrates that the performance of the combinatorial algo-
rithms for image segmentation problems dominates the performance of the spectral method
along several dimensions: in terms of better approximation of the respective normalized cut
objective, in terms of the visual quality of the segmented images, and in terms of run-
ning time.
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2. Notations, Problem Definitions, and Preliminaries

Let G = (V,E) be an undirected graph with edge weights w;; associated with each edge
[7,j] € E. We note that all the combinatorial algorithms to be described are applicable also for
directed, asymmetric, graphs, but in all applications studied here, the similarities are sym-
metric, and hence the respective graph is undirected. A bipartition of a graph is called a cut,
(S,8) = {[i,5]|i€ S,j € S}, where S = V\S. The capacity of a cut (S,S) is the sum of weights of
edges with one node in S and the other inS: C(S, S) = ZieS.jeS,[z‘,j]eEwij' More generally, for
a pair of sets A, BC V, we define C(4, B) = ZieA.jeB,[i,j]eEwij' In particular, the capacity of
a set, SC V, is the sum of edge weights within the set S,C(S,S) = >_; s ijepw;. The
weighted degree of node i is the sum of weights of edges incident with i, d; = Zj‘ (ile B Wij-

In the context of classification, the nodes of the graph correspond to data points, each of
which may be associated with a feature vector. The edge weights w;; quantify the similarity
between the respective feature vectors associated with nodes i and j. Higher similarity is
associated with higher weights.

A common form of similarity function is the Gaussian similarity. For two objects i and j
associated with the feature vectors v and v") let ||[v(? — 41| be the Euclidean distance
between i and j. The Gaussian similarity between ¢ and j is

() _ o]|?
Wi = eXp <HUUH>, (1)

2¢2

where parameter e represents a scaling factor. The Gaussian similarity function is often used in
image segmentation and spectral clustering, where each object is associated with a scalar value.

In addition to the similarity weights, a node i may have also an arbitrary nonnegative weight
associated with it, ¢;. For a set of nodes SC V, ¢(S) = >,

For a graph on n nodes with edge (or arc) weights w;;, the matrix W = (w;;) and the diagonal
matrix D with D;; = d; = Zjﬂ@j}eEwij are n X n matrices. The matrix £ = D —W is called the
Laplacian of the graph.

The problem of NC is formulated as

NC(S) — i C15:5) | O(5.5)
(5 = oCsey D icsdi * Diesdi’

Sharon et al. [27] referred to the following problem as “normalized cut” and stated that it is
NP-hard:

(2)

_0(8.5)
ocser O(S, S)

The solution to this problem is a subset S that is as dissimilar as possible to S and that also has
similarity within, measured by C(S,S), as large as possible. This problem is related to the
normalized cut problem, as discussed in Lemma 1, but it is polynomial time solvable as shown
in Hochbaum [16]. This problem is referred to as HNC:
. . C(8,9)
HNC(S) = min, 5,5y ®)
The solution set S* is referred to here as a source set, and its complement is called a sink set.
The optimization problem HNC, (3), was shown in Hochbaum [16] to be a monotone integer
program, and as such, it is solvable in polynomial time using a (parametric) minimum cut
procedure on an associated graph (Hochbaum [14]). That algorithm can solve more general
problems than can HNC. For instance, the similarity weights used in the numerator, the
intrasimilarity, can be different from the similarity weights used in the denominator, the
intersimilarity. This problem of HNC (3) is equivalent to mingcscv [(C(S,5))/ (X csdi)], as
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proved in Lemma 1. In this equivalent formulation, any node weights can be used to replace the
weighted degrees of the nodes. For any node weights, the problem is called ¢-HNC, defined in (6).
One variant of node weights, employing entropy, was used in Hochbaum et al. [21] for seg-
mentation of images. In that context the entropy variant proved to be highly effective. Fur-
thermore, the solution to HNC was shown in Hochbaum et al. [21] to provide a much better
approximation to the objective of NC than the solution provided by the spectral method, with
a better visual (subjective) quality. A sketch of some of these empirical results is given in Section 5.
Additional discussion on variants of HNC and how they compare with the spectral method used to
solve heuristically the normalized cut is provided in Section 3.

To illustrate the algorithmic technique used, we provide a sketch of the algorithm of
Hochbaum [16] for solving (3). The algorithms for solving the other variants are given in
Hochbaum [18]. The method solves parametrically the linearized problem HNC, for all pa-
rameter values A,

HNC, = @ICI?EIVC(S’ S) AC(S,S). (4)
The optimal solution to the ratio problem HNC corresponds to one specific optimal value of the
parameter A*. It is well known that for a sequence of values A} < Ag < -+ < A and .S; denoting
the respective source set associated with \;, the source sets are nested: 51 C Sy C--- C S;.. The
value of \* is selected as the largest for which the objective is nonpositive: mingcgcy C(S, S) —
A*C(8,5) <0. A biproduct of this solution method is that it finds all “breakpoints” of the
values of A and the associated bipartitions, one of which is the desired optimal solution. The
number of breakpoints is guaranteed to be relatively “small.” Thus the minimum ratio solution
corresponds to a specific linear weighting of the two criteria in the objective. It is often the case,
however, that the optimal weighting A* of the ratio solution is not necessarily the best in terms
of the quality of the resulting cluster, and a source set associated with a nonoptimal value of A
is a better cluster. After all, any arbitrary scalar multiplication of the numerator changes the
value of the optimal parameter and potentially the respective bipartition solution. It is
therefore more effective to consider a “good” weighting of the two criteria instead of solving for
the ratio problem. Here, this weighting value of X is one of the parameters to be selected when
implementing HNC, in its linearized version, as a classification method.

2.1. Overview

We first describe the type of clustering algorithms common in image segmentation. These
include the use of the spectral method, which is shown in Section 3 to be a (continuous)
relaxation of the normalized cut problem. In particular, we show how HNC and variants are
a form of discrete relaxation of the normalized cut problem. In Section 4, we describe the
combinatorial algorithm that solves a generalization of HNC. The algorithm for HNC is
a special case of that method. Next we provide a sample of experimental results for image
segmentation in Section 5. Section 6 contains the use of the combinatorial algorithm as
a general machine learning technique, with a sample of empirical results. Section 7 sketches the
methodology of sparse computation that permits the scaling of any similarity-based algo-
rithms. Several concluding remarks are provided in Section 8.

3. Combinatorial Algorithms in Image Segmentation and the
Spectral Method

As noted earlier, the normalized cut model, defined in (2), is well known in applications for
image segmentation, and the model of HNC, defined in (3), is somewhat related to it. The
normalized cut model is an intractable problem, but it has been solved heuristically by the
spectral method in which one computes the Fiedler eigenvector of a certain matrix. Because
the spectral method is commonly used in image segmentation, we provide here an overview of
the method and how HNC relates to it and compares with it.
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We call a generalization of normalized cut, introduced in Hochbaum [18], in which the node
weights are any nonnegative quantities ¢;, the quantity-normalized cut, or -NC:

c(,3) , (5.5)

NC(S*) = min — 5
NS = i =m0 )
A relaxation of this problem, which omits the second term in the objective value, is referred to
as ¢-HNC:
(s, S
¢-HNC(S*) = min ( ) (6)

ocscv  ¢(S)

We next show that HNC(.S*) = mingcscy [(C(S, S))/(C(S, S))] is equivalent to ¢-HNC where
the node weights ¢; = d;.

Lemma 1 (Hochbaum [16]). The sets of optimal solutions to mingcy [(C(S,S))/(C(S, S))] and
mingcy [(C(S, S))/(d(S))] are identical.
Proof. Employing arithmetic,

c(s.5)  0(5.5) |

c(s,8) d(5) '

(S,5)  d(S)—C(S.8) o059 1

Therefore, minimizing this ratio is equivalent to maximizing (d(S))/(C(S, 5)), which in turn is
equivalent to minimizing the reciprocal quantity (C(S, S))/(d(S)), which is the first term in
(2), as claimed. O

Recall that the n x n matrix £ = D — W is the Laplacian of the graph for W = (wj;), and D
is the diagonal matrix with D; = d;. For a real vector y € R" and a diagonal matrix @ with
Qi = ¢;, we introduce the Rayleigh problem,

Tigy
v 20met 113y Qy’

The following lemma, proved in Hochbaum [18], states that for @ = D or general @, the
Rayleigh problem is equivalent to the normalized cut or the quantity-normalized cut, re-
spectively. A special case of this lemma for Q = D was proved in Shi and Malik [28].

Lemma 2 (Hochbaum [18]). For a diagonal matriz @ with Q; = ¢; >0,
o y'ey o CO(S.S) | C(5.5)
min ——— = min + ——.
yTQ1=0ye{ b1}y T Qy 0+scv ¢(9) q(S)

Proof. Let the variables y; be binary with values — b or 1, defined as follows:
1 ifies,
YT\ ified
We first note that y” Qy =q(S) + b%¢(S). Second, the orthogonality constraint, y” Q1 = 0, is

equivalent to b = (¢(9))/(¢q(S)). The latter is a form of a balance requirement on the two parts
of the bipartition, which is why we refer to this constraint as the “balance constraint”:

y 'Sy =y Dy y' Wy
=Y i+ VY d—[C(S,8)—2bC(S,5) + 1 C(S,5)]
= C(8,9) + C(5,9) + v*C(8,58) + v*C(S,S)
—[C(8,8)—2bC(S,5) + b*C(S,9)]
= (1+ 6 +2b) C(8,5) = (1 + )*C(8,5).
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Therefore,

. yIPy . (@1+0b)*c(s,9)
min = min e
Y QI=0ye{-b1} YT Qy  yTQ1=0.5cv q(S) + b*¢(S)

We now substitute y” Q1 = 0 by the equivalent expression b = (q(S))/(q(S5)):

nees) () o9 (o) ees (o
S

w9+ 8AE) )4 (Y gs)  a(1rgy)

Hence,

T
o Yy e L L
Yy one 1y Qy iR O(5.5) [Q(S) " q(b_’)}’

as claimed. O

3.1. The Continuous Relaxation and the Spectral Method

Because the quantity-normalized cut is NP-hard even for ¢; = 1, it follows that the Rayleigh
problem is intractable even for () = I. One possible heuristic approach for solving the problem
is to consider the continuous relaration attained by eliminating the requirements on the
variables that y; € {—b,1} and permitting each y; to assume any real value. The spectral
relazation can be used to minimize this relaxation, referred to as the Rayleigh ratio Rr(Q):

T
Y'Yy
Hr(Q) = yT1=0y T Qy’

The discrete Rayleigh ratio problem b-DRR for a scalar b > 0 is the relaxation of the Rayleigh
ratio in which the sum constraint is removed:

T
Yy &y
R(Q,b)= min ——.
(@.9) wet-01}y " Qy

For the Raleigh problem and the discrete Raleigh ratio, any solution y implies
a partition (5,5):
{1 ified,
Yi =

—b ifies.

The scalar b, which seems out of place, is in fact the “balance” between the size of S and S as
implied by the orthogonality constrainty” Q1 = 0. For = I, this constraint |S| = bS], and
hence for b = 1, the partition is into two sets of equal size. For general diagonal matrix @), the
partition satisfies a “weighted balance” ). ¢q; = sze 54j-

For @ nonnegative, the optimal solution to the continuous relaxation Rr(Q) is attained by
setting the vector y equal to the second-smallest eigenvector solving £y = AQy for the
smallest nonzero eigenvalue A. To see that, note that the trivial minimum of Rr( Q) is 0, which
corresponds to the smallest eigenvalue 0 and eigenvector y = 1. To rule out this trivial solution
that does not correspond to a partition, one solves Q’é £ Q’%z = Az for the eigenvector z that
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corresponds to the second-smallest eigenvalue, setting y = @ 3z. These second-smallest ei-
genvector and eigenvalue are called the Fiedler eigenvector and Fiedler eigenvalue, re-
spectively. The orthogonality constraint rules out the trivial solution by requiring that the
solution vector y is orthogonal to 1. To map the Fiedler eigenvector solution to a partition, one
sets all the positive entries of y; to 1, and hence 7isin S, and all the remaining ones are assigned
to S. Alternatively, another threshold value is chosen, and all values of y; that exceed the
threshold value are set to S and the others to S. In an implementation known as the spectral
sweep method, one guesses all possible n — 1 thresholds and selects the one that has the smallest
value of the normalized cut objective. The spectral method was proposed as an effective
technique for image segmentation, which is to separate a salient feature from the background.
In Section 5, we report on experimentation comparing the HNC algorithm, which solves the
discrete Raleigh ratio problem, with the spectral method of Shi and Malik [28], for which an
implementation is available in Couret al. [9]. We also report, in Hochbaum et al. [21], on a set of
experiments in which HNC is compared with the spectral sweep method.

3.2. The Discrete Relaxation and HNC

The discrete Rayleigh ratio problem for a scalar b > 0 is attained by relaxing the orthogonality
sum constraint:

min yT§£y
wel 013y Qy’

R(Q,b) =

From the proof of Lemma 2 and Equation (7), R(Q,b) is equal to minimizing a certain
combinatorial expression:

yTey (14 b)*C(S,9)
min = mn—————=_.
wel-b}yTQy 5V g(S) + 82¢(9)

When ¢, =d; for all nodes (and @ = D) and b=0, the combinatorial expression is
(C(S,8))/(d(S)), which was proved in Lemma 1 to be equivalent to HNC. Although HNC
appears to be a special case, we showed in Hochbaum [18] that this discrete relaxation is solved
for any matrix @, and for all values of b simultaneously, in the complexity of a single minimum
cut on the graph. We showed in Hochbaum [18] that the solution is represented as a collection
of no more than n breakpoints, which are the same for any value of b. Note that the solution for
the optimal ratio differs for different values of b, but it is always one of the breakpoint so-
lutions. The description of the algorithm is provided next. Note that for b = 0 we get the
standard HNC ratio problem.

4. The Algorithm Solving the Discrete Rayleigh Ratio Problem

The DRR algorithm solves a relaxation of the Rayleigh problem resulting from omitting
constraint y? D1 = 0 and specifying the value of b, R(Q,b). This problem is the discrete
Rayleigh relaxation, or b-DRR:

y'%y . (1+b)°C(S.8)

»DRR) R(Q,b) = min >——== q(S) + 2q(S)
( ) BQb)= min Tras =, min 9(9) + 14(S)

(8)

To solve (8) we first “linearize” the ratio function: a general approach for minimizing
a fractional (or as it is sometimes called, geometric) objective function over a feasible region %,
mingeg [(f(z))/(g(z))], is to reduce it to a sequence of calls to an oracle that provides the yes/no
answer to the \- question:

Is there a feasible subset = € & such that (f(z) — Ag(z) <0)?
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If the answer to the A\-question is yes, then the optimal solution has a value smaller than .
Otherwise, the optimal value is greater than or equal to A. A standard approach is then to
utilize a binary search procedure that calls for the A-question O(log(UF)) times in order to
solve the problem, where U is an upper bound on the value of the numerator and F an upper
bound on the value of the denominator.

Therefore, if the linearized version of the problem—that is, the A-question—is solved in
polynomial time, then so is the ratio problem. Note that the number of calls to the linear
optimization is not strongly polynomial but rather, if binary search is employed, depends on
the logarithm of the magnitude of the numbers in the input. In our case, however, there is
a more efficient procedure.

The A-question of whether the value of 5-DRR is less than ) is equivalent to determining
whether

min y?%Ly — Ay’ Dy = min(1 + 5)20(5,5) —A[a(S) + v*¢(S)] 9)

yie{—b,1} Scv

is negative. We next construct an s, ¢ graph, GZm which corresponds to G = (V, E) for a fixed
value of b. This construction is a special case of solving monotone integer programming proved
in Hochbaum [14]. In Theorem 1 we prove that the source set S of the minimum s, t-cut in G?, is
an optimal solution to (9). Furthermore, the solution, for all values of A and thus for the
optimal ratio, is generated in the complexity of a single minimum s, t-cut. The construction of
the graph is illustrated when G is a grid graph where each interior node is adjacent to four
neighbors.

The graph G, is constructed as follows: We add a source node s and a sink node t. For each
edge [i,j] € E, there is a pair of arcs, (1, ), (4, 4) € Ast, both with capacity (1 4+ b)2wij. For each
node i, there is an arc (s, ) of capacity Ag; and an arc (i, t) of capacity Ab*q;. Two nodes,
¢, €V, are designated as the seed source and seed sink, respectively. This is done by
assigning infinite capacity to (s, ") and to (¢, t). This assignment guarantees that in any
feasible solution, s’ will be part of the source set S and # will be part of the sink set S. This will
rule out the trivial solutions of S=0 or S=V.

Theorem 1. The source set of a minimum cut in the graph Gi’,t s an optimal solution to the
linearized (-DRR) (9).

Proof. Let (SU{s}, TU{t}) be a partition of V U{s,t} corresponding to a finite capacity
s, t-cut in th. We compute this cut’s capacity:

C(SU{s}, TU{t}) = Aqg(T) + A?*q(S) + C(S, T)
=M1+ 8)g(V) — Ag(S) — \%q(T) + C(S, T).

Now the first term, A(1 + 6%)g(V), is a constant. Thus minimizing C(SU{s}, TU{t}) is
equivalent to minimizing (14 b)*C(S,8) — A[q(S) + b2¢(S)], which is the objective of (9). O

Next we show that graph G, can be simplified in the sense that it is equivalent to another
graph where only the source-adjacent arcs’ capacities and the sink-adjacent arcs’ capacities
depend on the parameters A and b. In simplifying the graph, we distinguish between the cases
where b>1or b<1or b= 1. When b> 1, all source-adjacent finite capacity arcs are saturated,
as the flow of \g; saturates the arc (s, i) and is below the capacity of (4, t), Ab*g;. We can thus
subtract the lower capacity from both, resulting in an equivalent graph with sink-adjacent
capacities equal to A\(b* — 1)¢; and source-adjacent capacities equal to zero (except for the
seed §). Similarly, for b < 1, we subtract A\b%; from the capacity of (s, i) and (4, t). This results
in no node adjacent to the sink. We therefore choose a sink “seed” node u, and connect it to ¢
with an infinite capacity arc. The capacity of the arcs from s to each node i is then A(1 — b?)g;,
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Figure 1. The graph th for G a grid graph generated from an image segmentation problem with
4-neighborhood setup and node weights g;.

as illustrated in Figure 2. In the case where b = 1, the analogous update results in all source-
adjacent and sink-adjacent arcs having zero capacity.

We next scale the graph arc weights by multiplying all arc capacities by a nonnegative
scalar, a. For a> 0, a minimum cut of capacity € in a graph th is also a minimum cut of
capacity o in the scaled graph « -G, Here, we choose o =1/(1 + b)?, as illustrated in
Figure 3.

In the updated graph G f;, either all source-adjacent capacities are proportional to A or all sink-
adjacent capacities are proportional to . This is therefore an instance of a parametric minimum
cut where all the arcs adjacent to the source are monotone nondecreasing with the parameter A
and all arcs adjacent to the sink are monotone nonincreasing with the parameter A. A parametric
minimum cut procedure can then be applied to find the largest value of A so that the A question is
answered in the affirmative. The running time of the procedure is the running time of solving for
a single minimum cut, using the push-relabel algorithm as in Fishbain et al. [13], or using the
HPF algorithm, as in Hochbaum [15]. Within this run time, all breakpoints of the parameter A
are generated, where the cut is changing by at least a single node. It is well known that there are
no more than n breakpoints (Hochbaum [15]).

Because HNC is a special case with @ = D and b =0, this parametric cut procedure implies
a polynomial time algorithm for the problem. The running time of the procedure is T'(n, m) for
a graph or digraph on n nodes and m edges or arcs. This run time improves on the running time
of the polynomial time algorithm in Hochbaum [16], which is based on a non-Rayleigh for-
mulation and has a running time of T'(m, m). For @ = D and b =1, the problem is the simple
minimum cut problem (we leave this to the reader to verify).

4.1. Solving for All Values of b Efficiently

For each value of b, the optimal solution to the ratio problem may be different. Yet any optimal
solution for b corresponds to a bipartition from the same universal set of “breakpoint” solutions
common to all values of b.

Figure 2. (Color online) Updated source and sink adjacent arcs’ capacities.
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. . . . . b
Figure 3. (Color online) Scaling arc weights in G,.
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To implement the parametric procedure efficiently, we choose a parameter 5 = X-[(1—b)/
(1+ b)] for b< 1 and a parameter 3 = \-[(b—1)/(1 + b)] for b> 1. There are no more than n
breakpoints for (. There are £ < n nested source sets of minimum cuts, each corresponding to
one of the ¢ breakpoints. Given the values of § at the breakpoints, {0, ...,05,}, we can
generate, for each value of b, all the breakpoints of \*. For b<1, A’ =3, [(1 + b)/(1—b)].
Consequently, by solving once the parametric problem for the parameter 3, we obtain si-
multaneously all the breakpoint solutions for every value of b in the complexity of a single
minimum cut, T'(n, m).

The one-breakpoint solution that minimizes the ratio for a given value of b depends on the
value of b. But any scaling of the numerator or denominator of the ratio may give a different
optimal solution, which coincides with a different breakpoint. We contend that a ratio is
a rather arbitrary form of weighting the two different objectives in the numerator and de-
nominator, and the scalar multiplication of the numerator can change that relative weighting.
We use a “good” selection of a breakpoint in the experimental study reported in Hochbaum [18],
which is the one that gives the best value of the respective objective function (normalized cut,
or ¢g-normalized cut).

5. Experimental Results for Image Segmentation

We tested the quality of the segmentation provided by HNC compared with the results
delivered by the spectral method using Shi’s implementation [9]. Because the spectral method
is justified by its approximating of the optimal solution to the NC problem, we compare the
solutions by their NC objective value. The similarity weights are generated, as is the standard
in image segmentation, with Gaussian exponential weights. The following two experiments,
presented in Figure 4 and Figure 5, use an image provided by Shi and an image provided by
Fishbain for this purpose, respectively. The segmentation achieved using the spectral method
and HNC are presented in the images by having the foreground pixels (the source set) as in the
original image and coloring black all the background pixels (the sink set). The combinatorial
algorithm for HNC is implemented using the HPF algorithm for max-flow min-cut (Hochbaum
[17]). The results in Figures 4 and 5 were first presented in Hochbaum [16]. Each of the
segmentations is a bipartition that is associated with a respective NC objective value. For the
image in Figure 4, the discrete approach improves on the spectral approach by a factor of about
20, and for the image in Figure 5, the improvement is by a factor of about 80. In terms of the
subjective visual quality of the segmentations, the quality of both the spectral segmentation
and the HNC segmentation appear similar for the image in Figure 4. Yet, for the image in
Figure 5, the background identified by the spectral method is obviously “wrong”: it contains
only half of the sky pixels.

In another, more extensive set of experiments, Hochbaum et al. [21] used 20 images from
a benchmark of images to test the performance of HNC versus that of the spectral method.
Here, there were two sets of experiments: In one set, the similarity weights were the Gaussian
exponential weights, (1), and the node weights were d;, the weighted degree of node . In
a second set, the node weights g; were “entropy” weights determined by the neighborhood of
each node (pixel). We then applied the spectral method to this g-normalized cut problem for
the matrix @ still using Shi’s code. The results are summarized in Figure 6, where for each one
of the 20 images there are two bars, one indicating the ratio of the NC objective value for the
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Figure 4. Normalized cut segmentation: (a) the input image (Source: Jianbo Shi), (b) the spectral
method output segmentation using Shi’s implementation, and (c¢) the output segmentation using the
HNC algorithm.

(a) (b) (©

Original Image Shi & Malik (spectral)

NC=35-10"" NC=1.702-10""

spectral solution to the HNC solution and the other indicating the ratio of the respective value
of the g-normalized cut objective. As can be seen, the HNC method performed significantly
better for all instances. Note that the ratio bars are given on a logarithmic scale.

6. Combinatorial Algorithms for Data Mining
6.1. Supervised Normalized Cut

Here, we are referring to the linearized version of HNC as HNC. The HNC model can be used as
either an unsupervised or supervised technique. To guarantee that the solution is nonempty
and strictly contained in V', one assigns, in advance, at least one node to be included in the
source set S and at least one node to be included in the sink set S (see Hochbaum [16] for
details). These nodes are referred to as seed nodes. We exploit the seed node mechanism to use
HNC as a supervised technique, forcing a priori the training data to be in either the source S or
the sink S, based on the training data labels. Specifically, for the supervised HNC method,
which we call SNC, the input consists of three sets: two sets of nodes, A and B, which are
associated with feature vectors acquired from two different labels’ classes in the training set,
M" and M?, and a third set, I, corresponding to data points with unknown labels. The goal of
the binary classification problem is to associate each data point in I with either M' or M?2.

The input to the classification problem is the graph, G = (V, E), defined on the set of
objects V' = AU BUT and the similarity weights associated with each pair of nodes (edge)
[4,7] € E. Two nodes s and t are added to the graph with an arc of infinite weight from s to each
node in A and from each node in B to ¢. On this graph we seek a partition that minimizes the
HNC criterion so that s € S and ¢t €S. The nodes in I that end up in S are classified as A; that is,

Figure 5. Normalized cut segmentation: (a) the input image (Source: Barak Fishbain), (b) the spectral
method output segmentation using Shi’s implementation, and (c) the output segmentation using the
HNC algorithm.

(a) (b) (©)

Original Image Shi & Malik (spectral)

NC =127-107* NC =1.466-107"
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Figure 6. (Color online) The relative performance of the spectral method compared with the com-
binatorial method for the minimization problems of the ¢-normalized cut and normalized cut; the larger
the ratio, the larger the gap and the better the performance of the combinatorial algorithm.
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training data with associated class M* and nodes in I that end up inS are classified as B, thus
acquired from M?. This is illustrated in Figure 7 (adapted from Yang et al. [33]).

The adjustment of HNC to a supervised context, as described, is the supervised classification
methodology. Because the adjustment of setting the seeds does not affect the running time, the
computational complexity of SNC is the same as that of HNC.

The setup of HNC does not require any labeled nodes except one node s that belongs to the
cluster S and one node ¢ that belongs to the complement. The selection of s and ¢ is to
guarantee that the solution is nonempty and strictly contained in V. When only two nodes are
specified as the source node and sink node, we refer to this variant of HNC as the unsupervised
variant of HNC. However, HNC can also be implemented as a supervised classification method.
In the supervised case, the input graph contains labeled nodes (training data) that refer to
objects for which the class label (either positive or negative) is known and unlabeled nodes that
refer to objects for which the class label is unknown. By assigning all labeled nodes with
a positive label to set S as source nodes merged with s and all labeled nodes with a negative
label to set S as sink nodes merged with ¢, the HNC model can be used in a supervised
manner (see Figure 7). The goal is then to assign all unlabeled nodes either to set S orS.
Because of the preassignment of labeled nodes, the graph’s size is reduced because all labeled

Figure 7. (a) Training sets A (dark grey) and B (light grey) and unclassified nodes C'. (b) The solution
consisting of two sets separated by a cut, with the set on the left containing nodes classified as A nodes and
the set on the right containing nodes classified as B nodes.
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nodes are merged with s or ¢, so the “supervised” graph contains only unlabeled nodes. This size
reduction implies a corresponding reduction in the running time of the algorithm. We refer to
the use of HNC in a supervised manner as a supervised normalized cut (SNC).

In the comparative study of Baumann et al. [4], we chose Gaussian similarity weights, which
are monotone functions of the Euclidean distances between the feature vectors v and vV
associated with objects 7 and j as in Equation (1). The parameter e representing the scaling
factor is one of the two tuning parameters of SNC. The second one is the relative weighting
parameter of the two objectives, A, in the linearized HNC. The minimum cut problems were
solved with the MATLAB implementation of the HPF pseudoflow algorithm, version 3.23, of
Chandran and Hochbaum [6] that was presented in Hochbaum [17].

The K-supervised normalized cut (KSNC) is a variant of SNC in which we use ¢-HNC,
mingcscy [(C(9,5))/(Xics9)], with node weights ¢; equal to the average class label of the
K-nearest labeled objects to i. For example, if K = 3 and the three nearest objects to i, in terms
of similarity, have labels 0, 1, and 1, then ¢, is 2/3. In contrast to the weights d;, which capture
the pairwise similarities between any pairs, whether or not the nodes are labeled, the weights ¢;
as defined above capture only the effect of the labeled nodes on the unlabeled nodes. KSNC is
therefore a sort of hybrid between SNC and KNN. Here again, we consider the linearized
version, which we refer to as KSNC:

min C(S,8) ~ )\;qi.

The tuning parameters for KSNC are the relative weighting parameter of the two objectives A,
the scaling factor of the exponential weights €, and the integer parameter K.

6.2. Commonly Used Machine Learning Techniques

In this section, we provide a brief description of the established classification techniques tested
in this study. The reader can find a detailed description of such techniques in Baumann et al.
[4]. These techniques can be divided into four groups: decision tree-based techniques,
regression-based techniques, similarity-based techniques, and other techniques. Our methods
of SNC and KSNC belong to the similarity-based techniques category. A fourth group cannot
be quite classified under the first three categories and is referred to as “other™

1. Decision tree-based machine learning techniques: In this study, we tested classification
and regression trees (CART) and three ensemble methods that combine multiple
classification trees into one machine learning technique: ensemble with adaptive
boosting (EADA), ensemble with bagging (EBAG), and ensemble with gentle adaptive
boosting (EGAB).

2. Regression-based machine learning techniques: These techniques include linear re-
gression (LIN), logistic regression (LOG), and Lasso regression (LASSO).

3. Similarity-based machine learning techniques: These techniques include the K-nearest
neighbors algorithm (KNN) and support vector machines (SVM and SVMR). In the
K-nearest neighbors algorithm, the majority label among the K training objects most
similar to an unlabeled object is assigned to the object. For support vector machines, we tested
two different tuning settings. In the first setting, linear, polynomial, and radial basis function
kernels are used for tuning. The algorithm that uses this setting is referred to as SVM. In the
second setting, only radial basis function kernels are used for tuning. The algorithm that uses
this setting is referred to as SVMR. We note that SVMR utilizes pairwise similarities.

4. Other machine learning techniques: Among the techniques in this category are the naive
Bayes classifier (CNB) and artificial neural networks (ANN).

A detailed analysis of the techniques and the source of their respective codes is provided in
Baumann et al. [4].
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6.3. Performance Measures

The study in Caruana and Niculescu-Mizil [5] demonstrated that different performance
measures are highly correlated. We therefore focused on the four most widely used perfor-
mance measures: Fj-score, precision, recall, and accuracy. Let TP, TN, FP, and FN denote
the number of true positives, true negatives, false positives, and false negatives, respectively.
Then Fj-score, precision, recall, and accuracy are defined as follows:

- 2TP
- r =
IO = ST ¥ FP + FN?
breciion_ TP
recision = -5 7P
TP
Recall = —
A TP+ FN”
TP + TN
Accuracy =

TP+ FP+ TN+ FN'

Note that the Fj-score is the harmonic mean of precision and recall.

6.4. Data Sets

The machine learning techniques were evaluated on 20 data sets that were downloaded from
the UCI Machine Learning Repository (see Asuncion and Newman [1]) and the LIBSVM
(Library for Support Vector Machines) website (see Chang and Lin [7]). The selected data sets
represent a variety of fields including life sciences, physical sciences, engineering, social sci-
ences, business, and others. The data sets differ in the number of objects, the number of
features, and the distribution of class labels and therefore required some preprocessing. The
collection comprises binary and multiclass classification problems. To avoid bias in the
conversion of multiclass problems into binary classification problems, we applied the following
selection rule: the multiclass labels (which are all numerical) were sorted in ascending order,
and then the first (lowest) label was selected as the positive class and all other labels as the
negative class. This ensures that all multiclass data sets are converted in the same way and
there is no exploitation of any domain knowledge for the conversion into binary classification
problems. Some data sets have missing values. In those sets, we removed the objects that
contained missing values. Categorical feature values were replaced by a set of Boolean features
(one Boolean feature per category). For a description of each data set and a summary of its
characteristics, we refer the reader to Baumann et al. [4].

Extensive experimental results on accuracy, recall, F}-scores, ranks, and testing times are
reported in Baumann et al. [4]. Here, we only provide the results on the relative Fj-scores in
Table 1.

6.5. Major Conclusions from the Study

The similarity-based algorithms SNC, SVMR, KSNC, and KNN are all among the top five
techniques. The highest average rank as well as the highest average normalized F}-score was
achieved by SNC. With the exception of EBAG, the average performance of all nonsimilarity-
based machine learning techniques is considerably lower than the performance of SNC.
Perhaps the most surprising result is that SNC is also superior to all other machine learning
techniques in terms of robustness. The SNC algorithm achieves not only the highest average
normalized Fij-score but also the highest average relative Fij-score and the highest minimum
relative Fj-score.
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Figure 8. (Color online) Impact of grid resolution on accuracy, density, and tuning times.
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In terms of running time of the techniques, CNB, KNN, cCART, LIN, and LOG are clearly
the fastest techniques. SNC has very low evaluation times for data sets that are small in terms
of the number of objects. However, the evaluation times increase considerably when the
number of objects increases. Also, the evaluation times of ANN, EADA, EBAG, EGAB, SVM,
and SVMR go up sharply as the number of objects increases. For the similarity-based machine
learning techniques (KNN, KSNC, SNC, and SVM), the evaluation time increase occurs
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Table 2. Data sets (after modifications).

Downloaded No. of No. of No. of No. of No. of positives/
Abbreviation from objects attributes positives negatives  no. of negatives
IRS LIBSVM 150 4 50 100 0.50
WIN LIBSVM 178 13 59 119 0.50
PAR UCI 195 22 147 48 3.06
SON UcCI 208 60 111 97 1.14
GLA LIBSVM 214 9 70 144 0.49
HEA LIBSVM 270 13 120 150 0.80
HAB UCI 306 3 81 225 0.36
VER UCI 310 6 210 100 2.10
ION UCI 351 34 225 126 1.79
DIA UCI 392 8 130 262 0.50
BCW UCI 683 10 239 444 0.54
AUS LIBSVM 690 14 307 383 0.80
BLD UCI 748 4 178 570 0.31
FOU LIBSVM 862 2 307 555 0.55
TIC UCI 958 27 626 332 1.89
GER UcCI 1,000 24 300 700 0.43
CAR UCI 2,126 21 1,655 471 3.51
SPL LIBSVM 3,175 60 1,648 1,527 1.08
LE1 UCI 20,000 16 753 19,247 0.04
LE2 UCI 20,000 16 9,940 10,060 0.99

because the number of pairwise similarities grows quadratically in the size of the data set. This
hinders the applicability of similarity-based machine learning techniques for very large data
sets. However, as discussed in Section 7 and in Baumann et al. [2, 3] and Hochbaum and
Baumann [19], the method of sparse computation that generates only the relevant similarities
results in sparse similarity matrices even for massively large data sets. With this technique,
significant improvements in running time can be achieved with minimal loss in accuracy.

Overall, the study demonstrates that the combinatorial optimization algorithms have
consistently best or close-to-best performance, and their performance is also the most robust.
An important insight derived from this study is that similarity-based algorithms perform
considerably better than nonsimilarity-based machine learning algorithms. This implies that
further investigations of effective machine learning techniques should focus on similarity-
based algorithms and on combinatorial optimization algorithms.

7. The Challenge of Similarities and the Quadratic Growth:
Sparse Computation

In a general data set, there is no natural provided notion of adjacency. For this reason, one may
have to construct the complete similarity matrix in which there is a similarity value for all
pairs. This corresponds to evaluating a clique graph on the set of objects in the data set. Such
an approach becomes prohibitive even for moderately sized data sets, as the number of
similarities (or nonzero entries in the matrix) grows as O(n?) for a data set on n objects.
Although there are various “sparsification” techniques known, these all require as input the
complete similarity matrix and then remove some of the entries by setting them to zero
according to various criteria. The point is that producing the complete similarity matrix in the
first place is prohibitive. The technique of sparse computation introduced in Hochbaum and
Baumann [19] is designed to determine, prior to computing the similarities, which similarities
are ‘relevant” and compute only those.

The technique named sparse computation (Baumann et al. [2, 3], Hochbaum and Baumann
[19]) recognizes the relevant pairwise similarities without first computing all pairwise
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similarities. Sparse computation effectively removes similarities that it recognizes to be
negligible without computing them first. For each pairwise similarity identified as negligible,
there is no edge connecting the respective pair, rendering the graph sparse.

Sparse computation is achieved via a process of principal component analysis (PCA) and in
fact uses “approximate” PCA on a sample of columns and rows. The PCA projects the feature
vectors onto a lower p-dimensional space, most often to three-dimensional space; p = 3. Each
dimension is then subdivided into k equal intervals, creating k? blocks. The value of k is
referred to as the resolution. The similarities are then only computed between blocks that are
adjacent along one of the dimensions, or diagonally—that is, within an L.« distance of one
block. Consequently, larger values of k correspond to finer resolutions and sparser graphs.

The sparse computation process has several advantages:

1. There are fewer similarities to compute, with substantial reduction in computational
effort.

2. The graphs tend to be sparse. This is important as a mitigation of a phenomenon that
happens with minimum cuts in very large (in terms of number of nodes) dense graphs.
Even if the arc weights are small, an approximately balanced partition will have a large
cut value because of the presence of a large number of arcs in the cut, roughly of
quadratic size in the number of nodes. For this reason, minimum cuts in large, dense
graphs tend to result in a very unbalanced partition, with almost all nodes on one side
and the remaining few on the other. The approach of sparse computing then effectively
sparsifies the graph and removes many edges (or arcs) but without computing their
similarity values first.

3. Inexperimentation on very large benchmark data sets, the sparse computation approach
appears to not have an adverse effect on accuracy, and occasionally, it even improves it
compared with lower resolutions or complete matrices (if the latter are possible to
compute). This is manifested for several data sets in Figure 8.

Sparse computation was shown to be effective at retaining accuracy while reducing con-
siderably graph density with increasing resolutions Hochbaum and Baumann [19]. The effect
of increasing the resolutions is illustrated in a computational study from Hochbaum and
Baumann [19], with results depicted in Figure 8. In that figure, the experiments compare the
accuracy and tuning time as a function of increased resolution (and reduced density), which is
controlled by increasing the value of k to the accuracy achieved with a complete matrix. The
complete matrix corresponds to the value of k = 2.

The data sets tested for the effectiveness of sparse computation in Hochbaum and Baumann
[19] are listed in Table 2. The last column of the table lists the ratio of the number of objects in
the positive class to the number of objects in the negative class. For Figure 8 we only tested
data sets of sizes up to 50, 000, which was the limit of being able to store the complete matrix
for the respective clique graph. For other data sets, the effect was tested as well but not
compared with the full matrix. See Hochbaum and Baumann [19] for details.

The sparse computation method considers each pixel i € V as an object defined by its feature
vector R;. The method first projects these feature vectors onto a low-dimensional space of
dimension p using a fast approximation of principal component analysis. The low-dimensional
space is then subdivided into a grid with & sections per dimension, resulting in a total of x? grid
blocks. Pairs of pixels are considered relevant similarities if the pixels fall in the same or
adjacent grid blocks in the low-dimensional space. These pairs of objects are selected for the
edge set F. For these pairs, we will compute the pairwise similarities.

The use of sparse computation provides various advantages, such as improving the running
time. For general machine learning problems, sparse computation significantly reduces the
running time of similarity-based classifiers (Baumann et al. [3], Hochbaum and Baumann [19]),
such as SNC, k-nearest neighbors, and support vector machines with radial basis function
kernels. We have not tested the effect of sparse computation on the use of the spectral method
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for data mining. The spectral method was compared with HNC for image segmentation data,
where the graph is inherently sparse. But for data mining, it was not considered, likely because
of the density of the Laplacian matrix. With sparse computation, it would be interesting to
conduct a study to test the efficacy of the spectral method for general data mining.

8. Conclusions

We present here combinatorial methods based on flow procedures that are effective in image
segmentation and as a general machine learning technique. The input to the methods includes
pairwise comparisons that are shown to enhance the quality of clustering and classification
while being implemented so as to enable scalability to very-large-scale data sets.
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